• Title/Summary/Keyword: Detection and Tracking of Moving Objects

Search Result 105, Processing Time 0.024 seconds

Real-Time Vehicle Detector with Dynamic Segmentation and Rule-based Tracking Reasoning for Complex Traffic Conditions

  • Wu, Bing-Fei;Juang, Jhy-Hong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.12
    • /
    • pp.2355-2373
    • /
    • 2011
  • Vision-based vehicle detector systems are becoming increasingly important in ITS applications. Real-time operation, robustness, precision, accurate estimation of traffic parameters, and ease of setup are important features to be considered in developing such systems. Further, accurate vehicle detection is difficult in varied complex traffic environments. These environments include changes in weather as well as challenging traffic conditions, such as shadow effects and jams. To meet real-time requirements, the proposed system first applies a color background to extract moving objects, which are then tracked by considering their relative distances and directions. To achieve robustness and precision, the color background is regularly updated by the proposed algorithm to overcome luminance variations. This paper also proposes a scheme of feedback compensation to resolve background convergence errors, which occur when vehicles temporarily park on the roadside while the background image is being converged. Next, vehicle occlusion is resolved using the proposed prior split approach and through reasoning for rule-based tracking. This approach can automatically detect straight lanes. Following this step, trajectories are applied to derive traffic parameters; finally, to facilitate easy setup, we propose a means to automate the setting of the system parameters. Experimental results show that the system can operate well under various complex traffic conditions in real time.

Real-Time Landmark Detection using Fast Fourier Transform in Surveillance (서베일런스에서 고속 푸리에 변환을 이용한 실시간 특징점 검출)

  • Kang, Sung-Kwan;Park, Yang-Jae;Chung, Kyung-Yong;Rim, Kee-Wook;Lee, Jung-Hyun
    • Journal of Digital Convergence
    • /
    • v.10 no.7
    • /
    • pp.123-128
    • /
    • 2012
  • In this paper, we propose a landmark-detection system of object for more accurate object recognition. The landmark-detection system of object becomes divided into a learning stage and a detection stage. A learning stage is created an interest-region model to set up a search region of each landmark as pre-information necessary for a detection stage and is created a detector by each landmark to detect a landmark in a search region. A detection stage sets up a search region of each landmark in an input image with an interest-region model created in the learning stage. The proposed system uses Fast Fourier Transform to detect landmark, because the landmark-detection is fast. In addition, the system fails to track objects less likely. After we developed the proposed method was applied to environment video. As a result, the system that you want to track objects moving at an irregular rate, even if it was found that stable tracking. The experimental results show that the proposed approach can achieve superior performance using various data sets to previously methods.

Omni-directional Surveillance and Motion Detection using a Fish-Eye Lens (어안 렌즈를 이용한 전방향 감시 및 움직임 검출)

  • Cho, Seog-Bin;Yi, Un-Kun;Baek, Kwang-Ryul
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.5 s.305
    • /
    • pp.79-84
    • /
    • 2005
  • In this paper, we developed an omni-directional surveillance and motion detection method. The fish-eye lens provides a wide field of view image. Using this image, the equi-distance model for the fish-eye lens is applied to get the perspective and panorama images. Generally, we must consider the trade-off between resolution and field of view of an image from a camera. To enhance the resolution of the result images, some kind of interpolation methods are applied. Also the moving edge method is used to detect moving objects for the object tracking.

Graph-based Object Detection and Tracking in H.264/AVC bitstream for Surveillance Video (H.264/AVC 비트스트림을 활용한 감시 비디오 내의 그래프 기반 객체 검출 및 추적)

  • Houari, Sabirin;Kim, Munchurl
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.100-103
    • /
    • 2010
  • In this paper we propose a method of detecting moving object in H.264/AVC bitstream by representing the $4{\times}4$ block partition units as nodes of graph. By constructing hierarchical graph by taking into account the relation between nodes and the spatial-temporal relations between graphs in frames, we are able to track small objects, distinguish two occluded objects, and identify objects that move and stop alternatively.

  • PDF

Improving Performance of YOLO Network Using Multi-layer Overlapped Windows for Detecting Correct Position of Small Dense Objects

  • Yu, Jae-Hyoung;Han, Youngjoon;Hahn, Hernsoo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.3
    • /
    • pp.19-27
    • /
    • 2019
  • This paper proposes a new method using multi-layer overlapped windows to improve the performance of YOLO network which is vulnerable to detect small dense objects. In particular, the proposed method uses the YOLO Network based on the multi-layer overlapped windows to track small dense vehicles that approach from long distances. The method improves the detection performance for location and size of small vehicles. It allows crossing area of two multi-layer overlapped windows to track moving vehicles from a long distance to a short distance. And the YOLO network is optimized so that GPU computation time due to multi-layer overlapped windows should be reduced. The superiority of the proposed algorithm has been proved through various experiments using captured images from road surveillance cameras.

A Method for Object Tracking Based on Background Stabilization (동적 비디오 기반 안정화 및 객체 추적 방법)

  • Jung, Hunjo;Lee, Dongeun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.14 no.1
    • /
    • pp.77-85
    • /
    • 2018
  • This paper proposes a robust digital video stabilization algorithm to extract and track an object, which uses a phase correlation-based motion correction. The proposed video stabilization algorithm consists of background stabilization based on motion estimation and extraction of a moving object. The motion vectors can be estimated by calculating the phase correlation of a series of frames in the eight sub-images, which are located in the corner of the video. The global motion vector can be estimated and the image can be compensated by using the multiple local motions of sub-images. Through the calculations of the phase correlation, the motion of the background can be subtracted from the former frame and the compensated frame, which share the same background. The moving objects in the video can also be extracted. In this paper, calculating the phase correlation to track the robust motion vectors results in the compensation of vibrations, such as movement, rotation, expansion and the downsize of videos from all directions of the sub-images. Experimental results show that the proposed digital image stabilization algorithm can provide continuously stabilized videos and tracking object movements.

The Role of the Pattern Edge in Goldfish Visual Motion Detection

  • Kim, Sun-Hee;Jung, Chang-Sub
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.6
    • /
    • pp.413-417
    • /
    • 2010
  • To understand the function of edges in perception of moving objects, we defined four questions to answer. Is the focus point in visual motion detection of a moving object: (1) the body or the edge of the object, (2) the leading edge or trailing edge of the object, (3) different in scotopic, mesopic and photopic luminance levels, or (4) different for colored objects? We measured the Optomotor Response (OMR) and Edge Triggering Response (ETR) of goldfish. We used a square and sine wave patterns with black and red stripes and a square wave pattern with black and grey stripes to generate OMR's and ETR's in the goldfish. When we used black and red stripes, the black leading edges stimulated an ETR under scotopic conditions, red leading edges stimulated an ETR under photopic conditions, and both black and red leading edges stimulated an ETR under mesopic luminance levels. For black and gray stripes, only black leading edges stimulated an ETR in all three light illumination levels. We observed less OMR and ETR results using the sine wave pattern compared to using the square wave pattern. From these results, we deduced that the goldfish tend to prefer tracking the leading edge of the pattern. The goldfish can also detect the color of the moving pattern under photopic luminance conditions. We decided that ETR is an intriguing factor in OMR, and is suitable as a method of behavioral measurement in visual system research.

An Object Detection and Tracking System using Fuzzy C-means and CONDENSATION (Fuzzy C-means와 CONDENSATION을 이용한 객체 검출 및 추적 시스템)

  • Kim, Jong-Ho;Kim, Sang-Kyoon;Hang, Goo-Seun;Ahn, Sang-Ho;Kang, Byoung-Doo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.16 no.4
    • /
    • pp.87-98
    • /
    • 2011
  • Detecting a moving object from videos and tracking it are basic and necessary preprocessing steps in many video systems like object recognition, context aware, and intelligent visual surveillance. In this paper, we propose a method that is able to detect a moving object quickly and accurately in a condition that background and light change in a real time. Furthermore, our system detects strongly an object in a condition that the target object is covered with other objects. For effective detection, effective Eigen-space and FCM are combined and employed, and a CONDENSATION algorithm is used to trace a detected object strongly. First, training data collected from a background image are linear-transformed using Principal Component Analysis (PCA). Second, an Eigen-background is organized from selected principal components having excellent discrimination ability on an object and a background. Next, an object is detected with FCM that uses a convolution result of the Eigen-vector of previous steps and the input image. Finally, an object is tracked by using coordinates of an detected object as an input value of condensation algorithm. Images including various moving objects in a same time are collected and used as training data to realize our system that is able to be adapted to change of light and background in a fixed camera. The result of test shows that the proposed method detects an object strongly in a condition having a change of light and a background, and partial movement of an object.

Active Object Tracking based on stepwise application of Region and Color Information (지역정보와 색 정보의 단계적 적용에 의한 능동 객체 추적)

  • Jeong, Joon-Yong;Lee, Kyu-Won
    • The KIPS Transactions:PartB
    • /
    • v.19B no.2
    • /
    • pp.107-112
    • /
    • 2012
  • An active object tracking algorithm using Pan and Tilt camera based in the stepwise application of region and color information from realtime image sequences is proposed. To reduce environment noises in input sequences, Gaussian filtering is performed first. An image is divided into background and objects by using the adaptive Gaussian mixture model. Once the target object is detected, an initial search window close to an object region is set up and color information is extracted from the region. We track moving objects in realtime by using the CAMShift algorithm which enables to trace objects in active camera with the color information. The proper tracking is accomplished by controlling the amount of pan and tilt to be placed the center position of object into the middle of field of view. The experimental results show that the proposed method is more effective than the hand-operated window method.

Radar-based Security System: Implementation for Cluttered Environment

  • Lee, Tae-Yun;Skvortsov, Vladimir;Ka, Min-Ho
    • Journal of IKEEE
    • /
    • v.19 no.2
    • /
    • pp.160-167
    • /
    • 2015
  • We present an experimental implementation of the inexpensive microwave security sensor that can detect both static and slowly moving objects in cluttered environment. The prototype consists of a frequency-modulated continuous wave radar sensor, control board or computer and software. The prototype was tested in a cluttered indoor environment. In case of intrusion or change of environment the sensor will give an alarm, determine the location of new object, change in its location and can detect a slowly moving target. To make a low-cost unit we use commercially available automotive radar and own signal processing techniques for object detection and tracking. The intruder detection is based on a comparison between current 'image' in memory and 'no-intrusion' reference image. The main challenge is to develop a reliable technique for detection of a relatively low-magnitude object signals hidden in multipath clutter echo signals. Various experimental measurements and computations have shown the feasibility and performance of the system.