• Title/Summary/Keyword: Detection and Tracking

Search Result 1,272, Processing Time 0.026 seconds

Performance Improvement for Tracking Small Targets (고기동 표적 추적 성능 개선을 위한 연구)

  • Jung, Yun-Sik;Kim, Kyung-Su;Song, Taek-Lyul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.11
    • /
    • pp.1044-1052
    • /
    • 2010
  • In this paper, a new realtime algorithm called the RTPBTD-HPDAF (Recursive Temporal Profile Base Target Detection with Highest Probability Data Association Filter) is presented for tracking fast moving small targets with IIR (Imaging Infrared) sensor systems. Spatial filter algorithms are mainly used for target in IIR sensor system detection and tracking however they often generate high density clutter due to various shapes of cloud. The TPBTD (Temporal Profile Base Target Detection) algorithm based on the analysis of temporal behavior of individual pixels is known to have good performance for detection and tracking of fast moving target with suppressing clutter. However it is not suitable to detect stationary and abruptly maneuvering targets. Moreover its computational load may not be negligible. The PTPBTD-HPDAF algorithm proposed in this paper for real-time target detection and tracking is shown to be computationally cheap while it has benefit of tracking targets with abrupt maneuvers. The performance of the proposed RTPBTD-HPDAF algorithm is tested and compared with the spatial filter with HPDAF algorithm for run-time and track initiation at real IIR video.

Multiple Object Detection and Tracking System robust to various Environment (환경변화에 강인한 다중 객체 탐지 및 추적 시스템)

  • Lee, Wu-Ju;Lee, Bae-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.6
    • /
    • pp.88-94
    • /
    • 2009
  • This paper proposes real time object detection and tracking algorithm that can be applied to security and supervisory system field. A proposed system is devide into object detection phase and object tracking phase. In object detection, we suggest Adaptive background subtraction method and Adaptive block based model which are advanced motion detecting methods to detect exact object motions. In object tracking, we design a multiple vehicle tracking system based on Kalman filtering. As a result of experiment, motion of moving object can be estimated. the result of tracking multipul object was not lost and object was tracked correctly. Also, we obtained improved result from long range detection and tracking.

A Real-time Eye Tracking Algorithm for Autostereoscopic 3-Dimensional Monitor (무안경식 3차원 모니터용 실시간 눈 추적 알고리즘)

  • Lim, Young-Shin;Kim, Joon-Seek;Joo, Hyo-Nam
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.8
    • /
    • pp.839-844
    • /
    • 2009
  • In this paper, a real-time eye tracking method using fast face detection is proposed. Most of the current eye tracking systems have operational limitations due to sensors, complicated backgrounds, and uneven lighting condition. It also suffers from slow response time which is not proper for a real-time application. The tracking performance is low under complicated background and uneven lighting condition. The proposed algorithm detects face region from acquired image using elliptic Hough transform followed by eye detection within the detected face region using Haar-like features. In order to reduce the computation time in tracking eyes, the algorithm predicts next frame search region from the information obtained in the current frame. Experiments through simulation show good performance of the proposed method under various environments.

Analysis of Tracking Accuracy with Consideration of Fighter Radar Measurement Characteristics (전투기 레이다 측정 특성을 고려한 추적정확도 분석)

  • Seo, Jeongjik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.8
    • /
    • pp.640-647
    • /
    • 2018
  • This study analyzes the tracking accuracy(tracking errors) of fighter radar. Measurement error, detection failure, and radar cross section(RCS) fluctuation in radar measurements degrade the measurement quality and hence affect the tracking accuracy. Therefore, these radar measurement characteristics need to be considered when analyzing the tracking accuracy. In this paper, a method for analyzing the tracking accuracy is proposed; this method considers the detection error, detection probability, and RCS fluctuation. Results from experiments conducted with the proposed method show that the detection probability and RCS fluctuation affect tracking accuracy.

Multiple Vehicle Detection and Tracking in Highway Traffic Surveillance Video Based on SIFT Feature Matching

  • Mu, Kenan;Hui, Fei;Zhao, Xiangmo
    • Journal of Information Processing Systems
    • /
    • v.12 no.2
    • /
    • pp.183-195
    • /
    • 2016
  • This paper presents a complete method for vehicle detection and tracking in a fixed setting based on computer vision. Vehicle detection is performed based on Scale Invariant Feature Transform (SIFT) feature matching. With SIFT feature detection and matching, the geometrical relations between the two images is estimated. Then, the previous image is aligned with the current image so that moving vehicles can be detected by analyzing the difference image of the two aligned images. Vehicle tracking is also performed based on SIFT feature matching. For the decreasing of time consumption and maintaining higher tracking accuracy, the detected candidate vehicle in the current image is matched with the vehicle sample in the tracking sample set, which contains all of the detected vehicles in previous images. Most remarkably, the management of vehicle entries and exits is realized based on SIFT feature matching with an efficient update mechanism of the tracking sample set. This entire method is proposed for highway traffic environment where there are no non-automotive vehicles or pedestrians, as these would interfere with the results.

Deep Learning-based Approach for Visitor Detection and Path Tracking to Enhance Safety in Indoor Cultural Facilities (실내 문화시설 안전을 위한 딥러닝 기반 방문객 검출 및 동선 추적에 관한 연구)

  • Wonseop Shin;Seungmin, Rho
    • Journal of Platform Technology
    • /
    • v.11 no.4
    • /
    • pp.3-12
    • /
    • 2023
  • In the post-COVID era, the importance of quarantine measures is greatly emphasized, and accordingly, research related to the detection of mask wearing conditions and prevention of other infectious diseases using deep learning is being conducted. However, research on the detection and tracking of visitors to cultural facilities to prevent the spread of diseases is equally important, so research on this should be conducted. In this paper, a convolutional neural network-based object detection model is trained through transfer learning using a pre-collected dataset. The weights of the trained detection model are then applied to a multi-object tracking model to monitor visitors. The visitor detection model demonstrates results with a precision of 96.3%, recall of 85.2%, and an F1-score of 90.4%. Quantitative results of the tracking model include a MOTA (Multiple Object Tracking Accuracy) of 65.6%, IDF1 (ID F1 Score) of 68.3%, and HOTA (Higher Order Tracking Accuracy) of 57.2%. Furthermore, a qualitative comparison with other multi-object tracking models showcased superior results for the model proposed in this paper. The research of this paper can be applied to the hygiene systems within cultural facilities in the post-COVID era.

  • PDF

Unified Detection and Tracking of Humans Using Gaussian Particle Swarm Optimization (가우시안 입자 군집 최적화를 이용한 사람의 통합된 검출 및 추적)

  • An, Sung-Tae;Kim, Jeong-Jung;Lee, Ju-Jang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.4
    • /
    • pp.353-358
    • /
    • 2012
  • Human detection is a challenging task in many fields because it is difficult to detect humans due to their variable appearance and posture. Furthermore, it is also hard to track the detected human because of their dynamic and unpredictable behavior. The evaluation speed of method is also important as well as its accuracy. In this paper, we propose unified detection and tracking method for humans using Gaussian-PSO (Gaussian Particle Swarm Optimization) with the HOG (Histograms of Oriented Gradients) features to achieve a fast and accurate performance. Keeping the robustness of HOG features on human detection, we raise the process speed in detection and tracking so that it can be used for real-time applications. These advantages are given by a simple process which needs just one linear-SVM classifier with HOG features and Gaussian-PSO procedure for the both of detection and tracking.

A Fast and Accurate Face Detection and Tracking Method by using Depth Information (깊이정보를 이용한 고속 고정밀 얼굴검출 및 추적 방법)

  • Bae, Yun-Jin;Choi, Hyun-Jun;Seo, Young-Ho;Kim, Dong-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7A
    • /
    • pp.586-599
    • /
    • 2012
  • This paper proposes a fast face detection and tracking method which uses depth images as well as RGB images. It consists of the face detection procedure and the face tracking procedure. The face detection method basically uses an existing method, Adaboost, but it reduces the size of the search area by using the depth image. The proposed face tracking method uses a template matching technique and incorporates an early-termination scheme to reduce the execution time further. The results from implementing and experimenting the proposed methods showed that the proposed face detection method takes only about 39% of the execution time of the existing method. The proposed tracking method takes only 2.48ms per frame with $640{\times}480$ resolution. For the exactness, the proposed detection method showed a little lower in detection ratio but in the error ratio, which is for the cases when a detected one as a face is not really a face, the proposed method showed only about 38% of that of the previous method. The proposed face tracking method turned out to have a trade-off relationship between the execution time and the exactness. In all the cases except a special one, the tracking error ratio is as low as about 1%. Therefore, we expect the proposed face detection and tracking methods can be used individually or in combined for many applications that need fast execution and exact detection or tracking.

Design of a MOT model based on Heatmap Detection and Transformer to improve object tracking performance (객체 추적 성능향상을 위한 Heatmap Detection 및 Transformer 기반의 MOT 모델 설계)

  • Hyun-Sung Yang;Chun-Bo Sim;Se-Hoon Jung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.461-463
    • /
    • 2023
  • 본 연구는 실시간 MOT(Multiple-Object-Tracking)의 성능을 향상시키기 위해 다양한 기법을 적용한 MOT 모델을 설계한다. 연구에서 사용하는 Backbone 모델은 TBD(Tracking-by-Detection) 기반의 Tracking 모델을 사용한다. Heatmap Detection을 통해 객체를 검출하고 Transformer 기반의 Feature를 연결하여 Tracking 한다. 제안하는 방법은 Anchor 기반의 Detection의 장시간 문제와 추적 객체 정보 전달손실을 감소하여 실시간 객체 추적에 도움이 될 것으로 사료된다.

Leak Detection and Location of Gas Pipelines Based on a Strong Tracking Filter

  • Zhao, Q.;Zhou, D.H.
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.2
    • /
    • pp.89-94
    • /
    • 2001
  • This paper presents an approach to leak detection and location of gas pipelines based on a strong tracking filter(STF). The STF has strong robustness against model uncertainties, which will deteriorate the performance of the extended Kalman filter. Hence, much faster and more accurate leak detection and location has been obtained. Computer simulation results demonstrate the effective-ness of the proposed approach.

  • PDF