• Title/Summary/Keyword: Detection Systems

Search Result 6,044, Processing Time 0.027 seconds

A Study On the Image Based Traffic Information Extraction Algorithm (영상기반 교통정보 추출 알고리즘에 관한 연구)

  • 하동문;이종민;김용득
    • Journal of Korean Society of Transportation
    • /
    • v.19 no.6
    • /
    • pp.161-170
    • /
    • 2001
  • Vehicle detection is the basic of traffic monitoring. Video based systems have several apparent advantages compared with other kinds of systems. However, In video based systems, shadows make troubles for vehicle detection. especially active shadows resulted from moving vehicles. In this paper a new method that combines background subtraction and edge detection is proposed for vehicle detection and shadow rejection. The method is effective and the correct rate of vehicle detection is higher than 98(%) in experiments, during which the passive shadows resulted from roadside buildings grew considerably. Based on the proposed vehicle detection method, vehicle tracking, counting, classification and speed estimation are achieved so that traffic information concerning traffic flow is obtained to describe the load of each lane.

  • PDF

Implementation of Intelligent Fire-Detection Systems Using DSP (DSP를 이용한 지능형 화재검출시스템 구현)

  • Kim, Hyun-tae;Song, Chong-kwan;Park, Jang-sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.411-414
    • /
    • 2009
  • Many victims and property damages are caused in fires every year. In this paper, intelligent fire-detection systems with embedded fire-detection algorithms for early fire detection and alarm is proposed to reduce fire damages by using image processing technique, high speed digital signal processor(DSP) technique, and information technique. The fire detection algorithms used for the proposed systems consist of flame and smoke detection algorithms. If flame or smoke is detected respectively, the corresponding alarm signal can be transferred to management computer. And if flame and smoke is detected simultaneously, the fire alarm signal shall be generated. Through several experiments in the physical environment, it is shown that the proposed system works well without malfunction.

  • PDF

Lane Detection Based on Inverse Perspective Transformation and Machine Learning in Lightweight Embedded System (경량화된 임베디드 시스템에서 역 원근 변환 및 머신 러닝 기반 차선 검출)

  • Hong, Sunghoon;Park, Daejin
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.1
    • /
    • pp.41-49
    • /
    • 2022
  • This paper proposes a novel lane detection algorithm based on inverse perspective transformation and machine learning in lightweight embedded system. The inverse perspective transformation method is presented for obtaining a bird's-eye view of the scene from a perspective image to remove perspective effects. This method requires only the internal and external parameters of the camera without a homography matrix with 8 degrees of freedom (DoF) that maps the points in one image to the corresponding points in the other image. To improve the accuracy and speed of lane detection in complex road environments, machine learning algorithm that has passed the first classifier is used. Before using machine learning, we apply a meaningful first classifier to the lane detection to improve the detection speed. The first classifier is applied in the bird's-eye view image to determine lane regions. A lane region passed the first classifier is detected more accurately through machine learning. The system has been tested through the driving video of the vehicle in embedded system. The experimental results show that the proposed method works well in various road environments and meet the real-time requirements. As a result, its lane detection speed is about 3.85 times faster than edge-based lane detection, and its detection accuracy is better than edge-based lane detection.

A Case Study of the Characteristics of Fire-Detection Signals of IoT-based Fire-Detection System (사례 분석을 통한 IoT 기반 화재탐지시스템의 화재 감지신호 특성)

  • Park, Seung Hwan;Kim, Doo Hyun;Kim, Sung Chul
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.3
    • /
    • pp.16-23
    • /
    • 2022
  • This study aims to provide a fundamental material for identifying fire and no-fire signals using the detection signal characteristics of IoT-based fire-detection systems. Unlike analog automatic fire-detection equipment, IoT-based fire-detection systems employ wireless digital communication and are connected to a server. If a detection signal exceeds a threshold value, the measured values are saved to a server within seconds. This study was conducted with the detection data saved from seven fire accidents that took place in traditional markets from 2020 to 2021, in addition to 233 fire alarm data that have been saved in the K institute from 2016 to 2020. The saved values demonstrated variable and continuous VC-Signals. Additionally, we discovered that the detection signals of two fire accidents in the K institution had a VC-Signal. In the 233 fire alarms that took place over the span of 5 years, 31% of smoke alarms and 30% of temperature alarms demonstrated a VC-Signal. Therefore, if we selectively recognize VC-Signals as fire signals, we can reduce about 70% of false alarms.

An Effective Anomaly Detection Approach based on Hybrid Unsupervised Learning Technologies in NIDS

  • Kangseok Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.2
    • /
    • pp.494-510
    • /
    • 2024
  • Internet users are exposed to sophisticated cyberattacks that intrusion detection systems have difficulty detecting. Therefore, research is increasing on intrusion detection methods that use artificial intelligence technology for detecting novel cyberattacks. Unsupervised learning-based methods are being researched that learn only from normal data and detect abnormal behaviors by finding patterns. This study developed an anomaly-detection method based on unsupervised machines and deep learning for a network intrusion detection system (NIDS). We present a hybrid anomaly detection approach based on unsupervised learning techniques using the autoencoder (AE), Isolation Forest (IF), and Local Outlier Factor (LOF) algorithms. An oversampling approach that increased the detection rate was also examined. A hybrid approach that combined deep learning algorithms and traditional machine learning algorithms was highly effective in setting the thresholds for anomalies without subjective human judgment. It achieved precision and recall rates respectively of 88.2% and 92.8% when combining two AEs, IF, and LOF while using an oversampling approach to learn more unknown normal data improved the detection accuracy. This approach achieved precision and recall rates respectively of 88.2% and 94.6%, further improving the detection accuracy compared with the hybrid method. Therefore, in NIDS the proposed approach provides high reliability for detecting cyberattacks.

An Efficient Spectrum Sensing Technique for Wireless Energy Harvesting Systems (무선에너지하비스팅 시스템을 위한 효율적인 스펙트럼 센싱 기법)

  • Hwang, Yu Min;Shin, Yoan;Kim, Dong In;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.4
    • /
    • pp.141-145
    • /
    • 2017
  • Spectrum sensing is a critical functionality of Cognitive Radio(CR) systems and the CR systems can be applied to RF energy harvesting systems to improve an energy harvesting rate. There are number of spectrum sensing techniques. One of techniques is energy detection. Energy detection is the simplest detection method and is the most commonly used. But, energy detection has a hidden terminal problem in real wireless communication, because of secondary user (SU) can be affected by frequency fading and shadowing. Cooperative spectrum sensing can solve this problem using spatial diversity of SUs. But it has a problem of increasing data by processing multiple secondary. So, we propose the system model using adaptive spectrum sensing algorithm and system model is simulated. This algorithm chooses sensing method between single energy sensing and cooperative energy according to the received signal's Signal to Noise Ratio (SNR) from Primary User (PU). The simulation result shows that adaptive spectrum sensing has an efficiency and improvement in CR systems.

Janus - Multi Source Event Detection and Collection System for Effective Surveillance of Criminal Activity

  • Shahabi, Cyrus;Kim, Seon Ho;Nocera, Luciano;Constantinou, Giorgos;Lu, Ying;Cai, Yinghao;Medioni, Gerard;Nevatia, Ramakant;Banaei-Kashani, Farnoush
    • Journal of Information Processing Systems
    • /
    • v.10 no.1
    • /
    • pp.1-22
    • /
    • 2014
  • Recent technological advances provide the opportunity to use large amounts of multimedia data from a multitude of sensors with different modalities (e.g., video, text) for the detection and characterization of criminal activity. Their integration can compensate for sensor and modality deficiencies by using data from other available sensors and modalities. However, building such an integrated system at the scale of neighborhood and cities is challenging due to the large amount of data to be considered and the need to ensure a short response time to potential criminal activity. In this paper, we present a system that enables multi-modal data collection at scale and automates the detection of events of interest for the surveillance and reconnaissance of criminal activity. The proposed system showcases novel analytical tools that fuse multimedia data streams to automatically detect and identify specific criminal events and activities. More specifically, the system detects and analyzes series of incidents (an incident is an occurrence or artifact relevant to a criminal activity extracted from a single media stream) in the spatiotemporal domain to extract events (actual instances of criminal events) while cross-referencing multimodal media streams and incidents in time and space to provide a comprehensive view to a human operator while avoiding information overload. We present several case studies that demonstrate how the proposed system can provide law enforcement personnel with forensic and real time tools to identify and track potential criminal activity.

A comparative study of low-complexity MMSE signal detection for massive MIMO systems

  • Zhao, Shufeng;Shen, Bin;Hua, Quan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1504-1526
    • /
    • 2018
  • For uplink multi-user massive MIMO systems, conventional minimum mean square error (MMSE) linear detection method achieves near-optimal performance when the number of antennas at base station is much larger than that of the single-antenna users. However, MMSE detection involves complicated matrix inversion, thus making it cumbersome to be implemented cost-effectively and rapidly. In this paper, we first summarize in detail the state-of-the-art simplified MMSE detection algorithms that circumvent the complicated matrix inversion and hence reduce the computation complexity from ${\mathcal{O}}(K^3)$ to ${\mathcal{O}}(K^2)$ or ${\mathcal{O}}(NK)$ with some certain performance sacrifice. Meanwhile, we divide the simplified algorithms into two categories, namely the matrix inversion approximation and the classical iterative linear equation solving methods, and make comparisons between them in terms of detection performance and computation complexity. In order to further optimize the detection performance of the existing detection algorithms, we propose more proper solutions to set the initial values and relaxation parameters, and present a new way of reconstructing the exact effective noise variance to accelerate the convergence speed. Analysis and simulation results verify that with the help of proper initial values and parameters, the simplified matrix inversion based detection algorithms can achieve detection performance quite close to that of the ideal matrix inversion based MMSE algorithm with only a small number of series expansions or iterations.

An Optimal Scrubbing Scheme for Auto Error Detection & Correction Logic (자가 복구 오류 검출 및 정정 회로 적용을 고려한 최적 스크러빙 방안)

  • Ryu, Sang-Moon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.11
    • /
    • pp.1101-1105
    • /
    • 2011
  • Radiation particles can introduce temporary errors in memory systems. To protect against these errors, so-called soft errors, error detection and correcting codes are used. In addition, scrubbing is applied which is a fundamental technique to avoid the accumulation of soft errors. This paper introduces an optimal scrubbing scheme, which is suitable for a system with auto error detection and correction logic. An auto error detection and correction logic can correct soft errors without CPU's writing operation. The proposed scrubbing scheme leads to maximum reliability by considering both allowable scrubbing load and the periodic accesses to memory by the tasks running in the system.

DC Ground Fault Detection System for Photovoltaic Generation (태양광 발전용 직류 지락 검출장치)

  • Jang, Su-Jin;Lee, Jeong-Min;Kim, Wang-Moon;Goo, Tae-Hong;Suh, In-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.408-411
    • /
    • 2008
  • In this paper, a new DC ground fault detection system is proposed, which is suitable for photovoltaic power generation systems. The proposed ground fault systems is superposition of divide resistance and detection circuit. The proposed system has the characteristics of a simplified structure, reduced cost and volume compared with those of the conventional ground fault system for DC source. The operation principle of the proposed systems is described and verified by simulation result.

  • PDF