• Title/Summary/Keyword: Detection Space

Search Result 1,634, Processing Time 0.031 seconds

Remote Distance Measurement from a Single Image by Automatic Detection and Perspective Correction

  • Layek, Md Abu;Chung, TaeChoong;Huh, Eui-Nam
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.3981-4004
    • /
    • 2019
  • This paper proposes a novel method for locating objects in real space from a single remote image and measuring actual distances between them by automatic detection and perspective transformation. The dimensions of the real space are known in advance. First, the corner points of the interested region are detected from an image using deep learning. Then, based on the corner points, the region of interest (ROI) is extracted and made proportional to real space by applying warp-perspective transformation. Finally, the objects are detected and mapped to the real-world location. Removing distortion from the image using camera calibration improves the accuracy in most of the cases. The deep learning framework Darknet is used for detection, and necessary modifications are made to integrate perspective transformation, camera calibration, un-distortion, etc. Experiments are performed with two types of cameras, one with barrel and the other with pincushion distortions. The results show that the difference between calculated distances and measured on real space with measurement tapes are very small; approximately 1 cm on an average. Furthermore, automatic corner detection allows the system to be used with any type of camera that has a fixed pose or in motion; using more points significantly enhances the accuracy of real-world mapping even without camera calibration. Perspective transformation also increases the object detection efficiency by making unified sizes of all objects.

A Study on the Performance of Human Hand Region Detection in Images According to Color Spaces (컬러공간에 따른 영상내 사람 손 영역의 검출 성능연구)

  • Kim, Jun-Yup;Do, Yong-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.186-188
    • /
    • 2005
  • Hand region detection in images is an important process in many computer vision applications. It is a process that usually starts at a pixel-level, and that involves a pre-process of color space transformation followed by a classification process. A color space transformation is assumed to increase separability between skin classes for hands and non-skin classes for other parts, to increase similarity among different skin tones, and to bring a robust performance under varying illumination conditions, without any sound reasonings. In this work, we examine if the color space transformation does bring those benefits to the problem of hand region detection on a dataset of images with different hand postures, backgrounds, people, and illuminations. Results indicate that best of the color space is the normalized RGB.

  • PDF

Simultaneous Faults Detection and Isolation Using Null Space Components of Faults for INS Sensor Redundancy

  • Yang, Cheol-Kwan;Shim, Duk-Sun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.32.4-32
    • /
    • 2002
  • We consider inertial navigation system (INS) sensor redundancy and propose a method which uses singular value decomposition to detect and isolate faults when even two sensors have faults simultaneously. When redundant sensor configuration is given, such as symmetric configuration in INS, the range space and null space of configuration matrix are determined. We use null space of configuration matrix and define 21 reference fault vectors which include 6 one-fault vectors and 15 two-fault vectors. Measurements are projected into null space of measurement matrix and compared with 21 normalized reference fault vectors, which determines fault detection and isolation.

  • PDF

Medial Axis Detection of Stripes Using LoG Scale-Space (LoG Scale-Space를 이용한 라인의 중심축 검출)

  • Byun, Ki-Won;Nam, Ki-Gon;Joo, Jae-Heum
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.3
    • /
    • pp.183-188
    • /
    • 2010
  • In this paper we propose a detection method of the medial axis of the continuous stripes on the LoG scale-space. Our method detects the medial axis of continuous stripes iteratively by varying the scale of LoG operator. Small-scale LoG operator detects two +/- pole pairs centered on the edge positions of stripe by the zero-crossing detection. The more increase the scale of LoG scale-space, the more close two poles to the medial axis of stripe. The medial axis of continuous stripe is the position where two poles is overlapped. The proposed method detected robustly the medial axis of continuous stripes stronger than the thinning methods used to binary image.

Keypoint Detection Using Normalized Higher-Order Scale Space Derivatives (스케일 공간 고차 미분의 정규화를 통한 특징점 검출 기법)

  • Park, Jongseung;Park, Unsang
    • Journal of KIISE
    • /
    • v.42 no.1
    • /
    • pp.93-96
    • /
    • 2015
  • The SIFT method is well-known for robustness against various image transformations, and is widely used for image retrieval and matching. The SIFT method extracts keypoints using scale space analysis, which is different from conventional keypoint detection methods that depend only on the image space. The SIFT method has also been extended to use higher-order scale space derivatives for increasing the number of keypoints detected. Such detection of additional keypoints detected was shown to provide performance gain in image retrieval experiments. Herein, a sigma based normalization method for keypoint detection is introduced using higher-order scale space derivatives.

A New Multiuser Receiver for the Application Of Space-time Coded OFDM Systems

  • Pham, Van-Su;Le, Minh-Tuan;Mai, Linh;Lee, Jae-Young;Yoon, Gi-Wan
    • Journal of information and communication convergence engineering
    • /
    • v.4 no.4
    • /
    • pp.151-154
    • /
    • 2006
  • In this work, a novel optimal multiuser detection (MUD) approach, which not only achieves the optimal maximum-likelihood (ML)-like performance but also has reasonably low computational complexity, for Space-time coded OFDM (ST-OFDM) systems is presented. In the proposed detection scheme, the signal model is firstly re-expressed into linearly equivalent one. Then, with the linearly equivalent signal model, a new jointly MUD algorithm is proposed to detect signals. The ML-like bit-error-rate (BER) performance and reasonably low complexity of the proposed detection are verified by computer simulations.

A Simplified Efficient Algorithm for Blind Detection of Orthogonal Space-Time Block Codes

  • Pham, Van Su;Mai, Linh;Lee, Jae-Young;Yoon, Gi-Wan
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.3
    • /
    • pp.261-265
    • /
    • 2008
  • This work presents a simplified efficient blind detection algorithm for orthogonal space-time codes(OSTBC). First, the proposed decoder exploits a proper decomposition approach of the upper triangular matrix R, which resulted from Cholesky-factorization of the composition channel matrix, to form an easy-to-solve blind detection equation. Secondly, in order to avoid suffering from the high computational load, the proposed decoder applies a sub-optimal QR-based decoder. Computer simulation results verify that the proposed decoder allows to significantly reduce computational complexity while still satisfying the bit-error-rate(BER) performance.

Effective Detection of Vanishing Points Using Inverted Coordinate Image Space (반전 좌표계 영상 공간을 이용한 효과적 소실점 검출)

  • 이정화;서경석;최흥문
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.6
    • /
    • pp.147-154
    • /
    • 2004
  • In this paper, Inverted Coordinates Image Space (ICIS) is proposed as a solution for the problem of the unbounded accumulator space in the automatic detection of the finite/infinite vanishing points in image space. Since the ICIS is based on the direct transformation from the image space, it does not lose any geometrical information from the original image and it does not require camera calibration as opposed to the Gaussian sphere based methods. Moreover, the proposed method can accurately detect both the finite and infinite vanishing points under a small fixed memory amount as opposed to the conventional image space based methods. Experiments are conducted on various real images in architectural environments to show the advantages of the proposed approach over conventional methods.

A robust detection scheme of OSTBCs with channel estimation errors over time-selective fading channels (실제적인 Time-Selective Fading Channels에서의 Orthogonal Space-Time Block Codes의 Detection Scheme)

  • Yu, Dong-Hun;Lee, Jae-Hong
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.17-18
    • /
    • 2006
  • In this paper, we propose a robust detection scheme of OSTBCs with channel estimation errors over time-selective fading channels. Channel estimation errors are inevitable over time-selective fading channels and even small channel estimation errors dramatically degrade the performance of space-time block coding schemes. Therefore, it is desired to investigate the effect of channel estimation errors on the performance of the proposed detection scheme compared with the existing detection scheme. The proposed detection scheme minimizes noise enhancement and impact of channel estimation errors which occur in an existing detection scheme. It is shown by simulations that the proposed detection scheme performs better than the existing detection scheme over time-selective fading channels.

  • PDF