기존의 사이버 공격 탐지 솔루션은 일반적으로 시그니처 기반 내지 악성행위 분석을 통한 방식의 탐지를 수행하므로, 알려지지 않은 방식에 의한 공격은 탐지하기 어렵다는 한계가 있다. 시스템에서는 상시로 발생하는 다양한 정보들이 시스템의 상태를 반영하고 있으므로, 이들 정보를 수집하여 정상상태를 학습하고 이상상태를 탐지하는 방식으로 알려지지 않은 공격을 탐지할 수 있다. 본 논문은 정상상태 학습 및 탐지에 활용하기 위하여 문자열을 그 순서와 의미를 보존하며 정량적 수치로 변환하는 머신러닝 임베딩(Embedding) 기법과 이상상태의 탐지를 위하여 다수의 정상데이터에서 소수의 비정상 데이터를 탐지하는 머신러닝 이상치 탐지(Novelty Detection) 기법을 이용하여 사이버 공격에 의한 시스템 이상상태를 탐지하는 방안을 제안한다.
International Journal of Control, Automation, and Systems
/
제5권2호
/
pp.155-160
/
2007
A fault detection and isolation (FDI) problem is considered for inertial sensors, such as gyroscopes and accelerometers and a new FDI method for double faults is proposed using reduced-order parity vector. The reduced-order parity vector (RPV) algorithm enables us to isolate double faults with 7 sensors. Averaged parity vector is used to reduce false alarm and wrong isolation, and to improve correct isolation. The RPV algorithm is analyzed by Monte-Carlo simulation and the performance is given through fault detection probability, correct isolation probability, and wrong isolation probability.
MANET composed mobile nodes without central concentration control like base station communicate through multi-hop route among nodes. Accordingly, it is hard to maintain stability of network because topology of network change at any time owing to movement of mobile nodes. MANET has security problems because of node mobility and needs intrusion detection system that can detect attack of malicious nodes. Therefore, system is protected from malicious attack of intruder in this environment and it has to correspond to attack immediately. In this paper, we propose intrusion detection system based on rules in order to more accurate intrusion detection. Cluster head perform role of monitor node to raise monitor efficiency of packet. In order to evaluate performance of proposed method, we used jamming attack, selective forwarding attack, repetition attack.
Due to the poor evaluation indexes such as detection accuracy and recall rate when Yolov3 network detects aircraft in remote sensing images, in this paper, we propose a remote sensing image aircraft detection method based on machine vision. In order to improve the target detection effect, the Inception module was introduced into the Yolov3 network structure, and then the data set was cluster analyzed using the k-means algorithm. In order to obtain the best aircraft detection model, on the basis of our proposed method, we adjusted the network parameters in the pre-training model and improved the resolution of the input image. Finally, our method adopted multi-scale training model. In this paper, we used remote sensing aircraft dataset of RSOD-Dataset to do experiments, and finally proved that our method improved some evaluation indicators. The experiment of this paper proves that our method also has good detection and recognition ability in other ground objects.
YOLOv4 can be used for detecting parking vehicles in order to check a vehicle in out-door parking space. YOLOv4 has 9 anchor boxes in each of 13x13 grid cells for detecting a bounding box of object. Because anchor boxes are allocated based on each cell, there can be existed small observational error for detecting real objects due to the distance between neighboring cells. In this paper, we proposed YOLOv4 grid cell shift algorithm for improving the out-door parking vehicle detection accuracy. In order to get more chance for trying to object detection by reducing the errors between anchor boxes and real objects, grid cells over image can be shifted to vertical, horizontal or diagonal directions after YOLOv4 basic detection process. The experimental results show that a combined algorithm of a custom trained YOLOv4 and a cell shift algorithm has 96.6% detection accuracy compare to 94.6% of a custom trained YOLOv4 only for out door parking vehicle images.
Kim, Chang-Joo;Jin, Eun Sook;Cheon, Kyung-yul;Kim, Seon-Hwan
ETRI Journal
/
제41권2호
/
pp.176-183
/
2019
Spectrum sensing plays an important role in spectrum sharing. Energy detection is generally used because it does not require a priori knowledge of primary user (PU) signals; however, it is sensitive to noise uncertainty. An order statistics (OS) detector provides inherent protection against nonhomogeneous background signals. However, no analysis has been conducted yet to apply OS detection to spectrum sensing in a wireless channel to solve noise uncertainty. In this paper, we propose a robust spectrum sensing scheme based on generalized order statistics (GOS) and analyze the exact false alarm and detection probabilities under noise uncertainty. From the equation of the exact false alarm probability, the threshold value is calculated to maintain a constant false alarm rate. The detection probability is obtained from the calculated threshold under noise uncertainty. As a fusion rule for cooperative spectrum sensing, we adopt an OR rule, that is, a 1-out-of-N rule, and we call the proposed scheme GOS-OR. The analytical results show that the GOS-OR scheme can achieve optimum performance and maintain the desired false alarm rates if the coefficients of the GOS-OR detector can be correctly selected.
비동기 W-CDMA 시스템에서의 초기 셀 탐색 과정은 일반적으로 슬롯 동기 획득, 프레임 동기 획득, 그리고 프라이머리 스크램블링 코드 획득의 3단계로 수행되며, 본 논문에서는 이 중 두 번째 단계인 프레임 동기 획득과정을 고려한다. 프레임 동기 획득 시 P-SCH (primary synchronization channel)로부터 채널을 추정하여 사용하는 방식을 coherent 검출 방식이라 하며, 본 논문에서는 기존의 coherent 검출 방식의 성능 개선을 위해 P-SCH로부터 추정된 채널 값에 1차 순환 필터(first order recursive filter)를 사용하는 간단한 형태의 검출 방식을 제안한다. 컴퓨터 모의실험을 통해 제안된 방식이 기존 방식틀에 비해 주파수 오차 범위가 넓은 환경에서 프레임 동기 검출 성능이 우수함을 보이고자 한다.
이미지 검색 및 매칭에 사용되는 SIFT 기법은 다양한 이미지 변화 요인들에 대하여 강인한 특성을 가지고 있는 것으로 알려져 있다. SIFT 기법은 기존의 픽셀 단위의 변화량에 의존한 특징점 추출 방식을 확장하여 스케일 공간에서의 변화량 분석을 통한 특징점 추출 방식을 제시하였으며, 이렇게 추출된 특징점들의 강인함은 그 동안 여러 실험을 통하여 입증되었다. 또한, 최근에는 스케일 공간 변화량 분석에 있어서 기존의 SIFT 기법을 확장하여 고차 미분 계수를 이용한 특징점 추출 방법도 소개되었다. 본 논문에서는 이러한 스케일 공간의 고차 미분에서의 정규화를 통한 보다 강인한 특징점 추출 기법을 소개하고 이러한 특징점들의 강인함을 이미지 검색 실험을 통하여 입증한다.
이 논문에서는 얼굴 영상에 대해 rank order 필터와 화소 값 차이를 사용하여 강인하게 눈동자를 찾는 방법을 제안한다. 개선된 rank order 필터를 사용하여 얼굴 영상에서 눈동자 후보점을 찾는다. 눈동자와 흰자위의 경계에서 화소값 변화가 크다는 사실을 이용하여 눈썹 등 눈동자가 아닌 위치에 있는 눈동자 후보점들을 제거한다. 눈동자 후보점을 두 점간의 거리와 각도를 이용하여 쌍으로 묶고 눈동자 영역에서의 밝기 정보를 이용한 적합도 함수를 적용하여 최종 눈동자를 추출한다. BioID 얼굴 데이터베이스에 있는 얼굴 영상 400개에 대한 실험 결과 90.25%의 눈동자 추출율을 보여 기존 방법보다 4% 개선된 결과를 얻었으며, 특히 안경을 착용한 얼굴 영상의 경우 기존 방법보다 약 12% 개선된 결과를 얻었다.
Cracks in plate-like structures are some of the main reasons for destruction of the entire structure. In this study, a novel two-stage methodology is proposed for damage detection of flexural plates using an optimized artificial neural network. In the first stage, location of damages in plates is investigated using curvature-moment and curvature-moment derivative concepts. After detecting the damaged areas, the equations for damage severity detection are solved via Bat Algorithm (BA). In the second stage, in order to efficiently reduce the computational cost of model updating during the optimization process of damage severity detection, multiple damage location assurance criterion index based on the frequency change vector of structures are evaluated using properly trained cascade feed-forward neural network (CFNN) as a surrogate model. In order to achieve the most generalized neural network as a surrogate model, its structure is optimized using binary version of BA. To validate this proposed solution method, two examples are presented. The results indicate that after determining the damage location based on curvature-moment derivative concept, the proposed solution method for damage severity detection leads to significant reduction of computational time compared with direct finite element method. Furthermore, integrating BA with the efficient approximation mechanism of finite element model, maintains the acceptable accuracy of damage severity detection.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.