• Title/Summary/Keyword: Detection Order

검색결과 4,431건 처리시간 0.031초

사이버 공격에 의한 시스템 이상상태 탐지 기법 (Detection of System Abnormal State by Cyber Attack)

  • 윤여정;정유진
    • 정보보호학회논문지
    • /
    • 제29권5호
    • /
    • pp.1027-1037
    • /
    • 2019
  • 기존의 사이버 공격 탐지 솔루션은 일반적으로 시그니처 기반 내지 악성행위 분석을 통한 방식의 탐지를 수행하므로, 알려지지 않은 방식에 의한 공격은 탐지하기 어렵다는 한계가 있다. 시스템에서는 상시로 발생하는 다양한 정보들이 시스템의 상태를 반영하고 있으므로, 이들 정보를 수집하여 정상상태를 학습하고 이상상태를 탐지하는 방식으로 알려지지 않은 공격을 탐지할 수 있다. 본 논문은 정상상태 학습 및 탐지에 활용하기 위하여 문자열을 그 순서와 의미를 보존하며 정량적 수치로 변환하는 머신러닝 임베딩(Embedding) 기법과 이상상태의 탐지를 위하여 다수의 정상데이터에서 소수의 비정상 데이터를 탐지하는 머신러닝 이상치 탐지(Novelty Detection) 기법을 이용하여 사이버 공격에 의한 시스템 이상상태를 탐지하는 방안을 제안한다.

Double Faults Isolation Based on the Reduced-Order Parity Vectors in Redundant Sensor Configuration

  • Yang, Cheol-Kwan;Shim, Duk-Sun
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권2호
    • /
    • pp.155-160
    • /
    • 2007
  • A fault detection and isolation (FDI) problem is considered for inertial sensors, such as gyroscopes and accelerometers and a new FDI method for double faults is proposed using reduced-order parity vector. The reduced-order parity vector (RPV) algorithm enables us to isolate double faults with 7 sensors. Averaged parity vector is used to reduce false alarm and wrong isolation, and to improve correct isolation. The RPV algorithm is analyzed by Monte-Carlo simulation and the performance is given through fault detection probability, correct isolation probability, and wrong isolation probability.

MANET에서 규칙을 기반으로 한 계층형 침입 탐지에 관한 연구 (The Study of Hierarchical Intrusion Detection Based on Rules for MANET)

  • 정혜원
    • 디지털산업정보학회논문지
    • /
    • 제6권4호
    • /
    • pp.153-160
    • /
    • 2010
  • MANET composed mobile nodes without central concentration control like base station communicate through multi-hop route among nodes. Accordingly, it is hard to maintain stability of network because topology of network change at any time owing to movement of mobile nodes. MANET has security problems because of node mobility and needs intrusion detection system that can detect attack of malicious nodes. Therefore, system is protected from malicious attack of intruder in this environment and it has to correspond to attack immediately. In this paper, we propose intrusion detection system based on rules in order to more accurate intrusion detection. Cluster head perform role of monitor node to raise monitor efficiency of packet. In order to evaluate performance of proposed method, we used jamming attack, selective forwarding attack, repetition attack.

Aircraft Recognition from Remote Sensing Images Based on Machine Vision

  • Chen, Lu;Zhou, Liming;Liu, Jinming
    • Journal of Information Processing Systems
    • /
    • 제16권4호
    • /
    • pp.795-808
    • /
    • 2020
  • Due to the poor evaluation indexes such as detection accuracy and recall rate when Yolov3 network detects aircraft in remote sensing images, in this paper, we propose a remote sensing image aircraft detection method based on machine vision. In order to improve the target detection effect, the Inception module was introduced into the Yolov3 network structure, and then the data set was cluster analyzed using the k-means algorithm. In order to obtain the best aircraft detection model, on the basis of our proposed method, we adjusted the network parameters in the pre-training model and improved the resolution of the input image. Finally, our method adopted multi-scale training model. In this paper, we used remote sensing aircraft dataset of RSOD-Dataset to do experiments, and finally proved that our method improved some evaluation indicators. The experiment of this paper proves that our method also has good detection and recognition ability in other ground objects.

노상 주차 차량 탐지를 위한 YOLOv4 그리드 셀 조정 알고리즘 (YOLOv4 Grid Cell Shift Algorithm for Detecting the Vehicle at Parking Lot)

  • 김진호
    • 디지털산업정보학회논문지
    • /
    • 제18권4호
    • /
    • pp.31-40
    • /
    • 2022
  • YOLOv4 can be used for detecting parking vehicles in order to check a vehicle in out-door parking space. YOLOv4 has 9 anchor boxes in each of 13x13 grid cells for detecting a bounding box of object. Because anchor boxes are allocated based on each cell, there can be existed small observational error for detecting real objects due to the distance between neighboring cells. In this paper, we proposed YOLOv4 grid cell shift algorithm for improving the out-door parking vehicle detection accuracy. In order to get more chance for trying to object detection by reducing the errors between anchor boxes and real objects, grid cells over image can be shifted to vertical, horizontal or diagonal directions after YOLOv4 basic detection process. The experimental results show that a combined algorithm of a custom trained YOLOv4 and a cell shift algorithm has 96.6% detection accuracy compare to 94.6% of a custom trained YOLOv4 only for out door parking vehicle images.

Robust spectrum sensing under noise uncertainty for spectrum sharing

  • Kim, Chang-Joo;Jin, Eun Sook;Cheon, Kyung-yul;Kim, Seon-Hwan
    • ETRI Journal
    • /
    • 제41권2호
    • /
    • pp.176-183
    • /
    • 2019
  • Spectrum sensing plays an important role in spectrum sharing. Energy detection is generally used because it does not require a priori knowledge of primary user (PU) signals; however, it is sensitive to noise uncertainty. An order statistics (OS) detector provides inherent protection against nonhomogeneous background signals. However, no analysis has been conducted yet to apply OS detection to spectrum sensing in a wireless channel to solve noise uncertainty. In this paper, we propose a robust spectrum sensing scheme based on generalized order statistics (GOS) and analyze the exact false alarm and detection probabilities under noise uncertainty. From the equation of the exact false alarm probability, the threshold value is calculated to maintain a constant false alarm rate. The detection probability is obtained from the calculated threshold under noise uncertainty. As a fusion rule for cooperative spectrum sensing, we adopt an OR rule, that is, a 1-out-of-N rule, and we call the proposed scheme GOS-OR. The analytical results show that the GOS-OR scheme can achieve optimum performance and maintain the desired false alarm rates if the coefficients of the GOS-OR detector can be correctly selected.

W-CDMA 시스템의 초기 프레임 동기 획득을 위한 Coherent 검출 방식의 성능 개선 (A Simple Enhancement of Coherent Detection for Initial Frame Synchronization in W-CDMA Systems)

  • 최원응;주정석
    • 대한전자공학회논문지TC
    • /
    • 제47권10호
    • /
    • pp.43-48
    • /
    • 2010
  • 비동기 W-CDMA 시스템에서의 초기 셀 탐색 과정은 일반적으로 슬롯 동기 획득, 프레임 동기 획득, 그리고 프라이머리 스크램블링 코드 획득의 3단계로 수행되며, 본 논문에서는 이 중 두 번째 단계인 프레임 동기 획득과정을 고려한다. 프레임 동기 획득 시 P-SCH (primary synchronization channel)로부터 채널을 추정하여 사용하는 방식을 coherent 검출 방식이라 하며, 본 논문에서는 기존의 coherent 검출 방식의 성능 개선을 위해 P-SCH로부터 추정된 채널 값에 1차 순환 필터(first order recursive filter)를 사용하는 간단한 형태의 검출 방식을 제안한다. 컴퓨터 모의실험을 통해 제안된 방식이 기존 방식틀에 비해 주파수 오차 범위가 넓은 환경에서 프레임 동기 검출 성능이 우수함을 보이고자 한다.

스케일 공간 고차 미분의 정규화를 통한 특징점 검출 기법 (Keypoint Detection Using Normalized Higher-Order Scale Space Derivatives)

  • 박종승;박운상
    • 정보과학회 논문지
    • /
    • 제42권1호
    • /
    • pp.93-96
    • /
    • 2015
  • 이미지 검색 및 매칭에 사용되는 SIFT 기법은 다양한 이미지 변화 요인들에 대하여 강인한 특성을 가지고 있는 것으로 알려져 있다. SIFT 기법은 기존의 픽셀 단위의 변화량에 의존한 특징점 추출 방식을 확장하여 스케일 공간에서의 변화량 분석을 통한 특징점 추출 방식을 제시하였으며, 이렇게 추출된 특징점들의 강인함은 그 동안 여러 실험을 통하여 입증되었다. 또한, 최근에는 스케일 공간 변화량 분석에 있어서 기존의 SIFT 기법을 확장하여 고차 미분 계수를 이용한 특징점 추출 방법도 소개되었다. 본 논문에서는 이러한 스케일 공간의 고차 미분에서의 정규화를 통한 보다 강인한 특징점 추출 기법을 소개하고 이러한 특징점들의 강인함을 이미지 검색 실험을 통하여 입증한다.

Rank Order Filter와 화소값 차이를 이용한 강인한 눈동자 검출 (Robust Pupil Detection using Rank Order Filter and Pixel Difference)

  • 장경식
    • 한국정보통신학회논문지
    • /
    • 제16권7호
    • /
    • pp.1383-1390
    • /
    • 2012
  • 이 논문에서는 얼굴 영상에 대해 rank order 필터와 화소 값 차이를 사용하여 강인하게 눈동자를 찾는 방법을 제안한다. 개선된 rank order 필터를 사용하여 얼굴 영상에서 눈동자 후보점을 찾는다. 눈동자와 흰자위의 경계에서 화소값 변화가 크다는 사실을 이용하여 눈썹 등 눈동자가 아닌 위치에 있는 눈동자 후보점들을 제거한다. 눈동자 후보점을 두 점간의 거리와 각도를 이용하여 쌍으로 묶고 눈동자 영역에서의 밝기 정보를 이용한 적합도 함수를 적용하여 최종 눈동자를 추출한다. BioID 얼굴 데이터베이스에 있는 얼굴 영상 400개에 대한 실험 결과 90.25%의 눈동자 추출율을 보여 기존 방법보다 4% 개선된 결과를 얻었으며, 특히 안경을 착용한 얼굴 영상의 경우 기존 방법보다 약 12% 개선된 결과를 얻었다.

Damage detection of plate-like structures using intelligent surrogate model

  • Torkzadeh, Peyman;Fathnejat, Hamed;Ghiasi, Ramin
    • Smart Structures and Systems
    • /
    • 제18권6호
    • /
    • pp.1233-1250
    • /
    • 2016
  • Cracks in plate-like structures are some of the main reasons for destruction of the entire structure. In this study, a novel two-stage methodology is proposed for damage detection of flexural plates using an optimized artificial neural network. In the first stage, location of damages in plates is investigated using curvature-moment and curvature-moment derivative concepts. After detecting the damaged areas, the equations for damage severity detection are solved via Bat Algorithm (BA). In the second stage, in order to efficiently reduce the computational cost of model updating during the optimization process of damage severity detection, multiple damage location assurance criterion index based on the frequency change vector of structures are evaluated using properly trained cascade feed-forward neural network (CFNN) as a surrogate model. In order to achieve the most generalized neural network as a surrogate model, its structure is optimized using binary version of BA. To validate this proposed solution method, two examples are presented. The results indicate that after determining the damage location based on curvature-moment derivative concept, the proposed solution method for damage severity detection leads to significant reduction of computational time compared with direct finite element method. Furthermore, integrating BA with the efficient approximation mechanism of finite element model, maintains the acceptable accuracy of damage severity detection.