DOI QR코드

DOI QR Code

Robust Pupil Detection using Rank Order Filter and Pixel Difference

Rank Order Filter와 화소값 차이를 이용한 강인한 눈동자 검출

  • 장경식 (동의대학교 멀티미디어공학과)
  • Received : 2012.02.07
  • Accepted : 2012.03.20
  • Published : 2012.07.31

Abstract

In this paper, we propose a robust pupil detection method using rank order filter and pixel value difference in facial image. We have detected the potential pupil candidates using rank order filter. Many false pupil candidates found at eyebrow are removed using the fact that the pixel difference is much at the boundary between pupil and sclera. The rest pupil candidates are grouped into pairs. Each pair is verified according to geometric constraints such as the angle and the distance between two candidates. A fitness function is obtained for each pair using the pixel values of two pupil regions, we select a pair with the smallest fitness value as a final pupil. The experiments have been performed for 400 images of the BioID face database. The results show that it achieves more than 90% accuracy, and especially the proposed method improves the detection rate and high accuracy for face with spectacle.

이 논문에서는 얼굴 영상에 대해 rank order 필터와 화소 값 차이를 사용하여 강인하게 눈동자를 찾는 방법을 제안한다. 개선된 rank order 필터를 사용하여 얼굴 영상에서 눈동자 후보점을 찾는다. 눈동자와 흰자위의 경계에서 화소값 변화가 크다는 사실을 이용하여 눈썹 등 눈동자가 아닌 위치에 있는 눈동자 후보점들을 제거한다. 눈동자 후보점을 두 점간의 거리와 각도를 이용하여 쌍으로 묶고 눈동자 영역에서의 밝기 정보를 이용한 적합도 함수를 적용하여 최종 눈동자를 추출한다. BioID 얼굴 데이터베이스에 있는 얼굴 영상 400개에 대한 실험 결과 90.25%의 눈동자 추출율을 보여 기존 방법보다 4% 개선된 결과를 얻었으며, 특히 안경을 착용한 얼굴 영상의 경우 기존 방법보다 약 12% 개선된 결과를 얻었다.

Keywords

References

  1. P. J. Philips, Hyeonjoon Moon, S. A. Rizvi, and O. J. Rauss, "The Feret evaluation methodology for facerecognition algorithm," IEEE Trans. on PAMI, pp. 246-252, 1999.
  2. A.L. Yuille, P.W. Hallinan, D.S. Cohen, "Feature extraction from faces using deformable templates", Int. J. Comput. Vision 8 (2) (1992) 99-111 https://doi.org/10.1007/BF00127169
  3. Fei Zuo, Peter H.N. de With. "Real-time Face Detection and Feature Localization for Consumer Applications," Proceedings of the PROGRESS/STW, pp.257-262, 2003.
  4. Jürgen Rurainsky, Peter Eisert, "Template-Based Eye and Mouth Detection for 3D Video Conferencing," LNCS, Vol. 2849, pp.23-31, 2003.
  5. A. Pentland, B. Moghaddam, and Thad Starner, "View-based and modular eigenspaces for face recongnition", In Proceedings of IEEE Conference on Computer Vision and Pattern Recongnition, pp.84-91,1994
  6. A. Cagatay Talay, "An Approach for Eye Detection Using Parallel Genetic Algorithm" HComputational Science - ICCS 2005
  7. T. Akashi, Y. Wakasa, K. Tanaka, S. G. Karungaru, and M. Fukumi, "Genetic eye detection using artificial template," Journal of Signal Processing, vol. 10, no. 6, pp. 453-463, November 2006.
  8. Nishimura, T. Nakashige, M. Akashi, T. Wakasa, Y. Tanaka, K "Eye interface for physically impaired people by Genetic Eye Tracking", SICE Annual Conference 2007 Sept. 17-20, 2007.
  9. Z. Zhou and X. Geng, "Projection Functions for Eye Detection," Pattern Recognition, Vol. 37, No. 5, pp. 1049-1056, 2004. https://doi.org/10.1016/j.patcog.2003.09.006
  10. Jianfeng, Ren, "Eye Detection Based on Rank Order Filter," Information Communications and Signal Processing, pp. 1-4, 2009.
  11. Ling Gan and Qingjun Liu, "Eye Detection Based on Rank Order Filter and Projection Function," Int. Conf. On Computer Design and Application, pp. 642-645, 2010.
  12. T. Kawaguchi, and M. Rizon, "Iris detection using intensity and edge information", Pattern Recognition, Vol. 36, Num. 22, pp. 549-562, 2003 https://doi.org/10.1016/S0031-3203(02)00066-3
  13. Hyoung-Joon Kim, Whoi-Yul Kim, "Eye Detection in Facial Images Using Zernike Moments with SVM, [ETRI]ETRI Journal-제30권 제2호, 2008.4