• 제목/요약/키워드: Detection Order

검색결과 4,431건 처리시간 0.034초

TFT-LCD 영상에서 결함 군집도 특성 기반의 확률밀도함수를 이용한 결함 검출 알고리즘 (Defect Detection algorithm of TFT-LCD Polarizing Film using the Probability Density Function based on Cluster Characteristic)

  • 구은혜;박길흠
    • 한국멀티미디어학회논문지
    • /
    • 제19권3호
    • /
    • pp.633-641
    • /
    • 2016
  • Automatic defect inspection system is composed of the step in the pre-processing, defect candidate detection, and classification. Polarizing films containing various defects should be minimized over-detection for classifying defect blobs. In this paper, we propose a defect detection algorithm using a skewness of histogram for minimizing over-detection. In order to detect up defects with similar to background pixel, we are used the characteristics of the local region. And the real defect pixels are distinguished from the noise using the probability density function. Experimental results demonstrated the minimized over-detection by utilizing the artificial images and real polarizing film images.

TIME-VARIANT OUTLIER DETECTION METHOD ON GEOSENSOR NETWORKS

  • Kim, Dong-Phil;I, Gyeong-Min;Lee, Dong-Gyu;Ryu, Keun-Ho
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2008년도 International Symposium on Remote Sensing
    • /
    • pp.410-413
    • /
    • 2008
  • Existing Outlier detections have been widely studied in geosensor networks. Recently, machine learning and data mining have been applied the outlier detection method to build a model that distinguishes outliers based on anchored criterion. However, it is difficult for the existing methods to detect outliers against incoming time-variant data, because outlier detection needs to monitor incoming data and classify irregular attacks. Therefore, in order to solve the problem, we propose a time-variant outlier detection using 2-dimensional grid method based on unanchored criterion. In the paper, outliers using geosensor data was performed to classify efficiently. The proposed method can be utilized applications such as network intrusion detection, stock market analysis, and error data detection in bank account.

  • PDF

Efficient Detection of Space-Time Block Codes Based on Parallel Detection

  • 김정창;전경훈
    • 한국통신학회논문지
    • /
    • 제36권2A호
    • /
    • pp.100-107
    • /
    • 2011
  • Algorithms based on the QR decomposition of the equivalent space-time channel matrix have been proved useful in the detection of V-BLAST systems. Especially, the parallel detection (PD) algorithm offers ML approaching performance up to 4 transmit antennas with reasonable complexity. We show that when directly applied to STBCs, the PD algorithm may suffer a rather significant SNR degradation over ML detection, especially at high SNRs. However, simply extending the PD algorithm to allow p ${\geq}$ 2 candidate layers, i.e. p-PD, regains almost all the loss but only at a significant increase in complexity. Here, we propose a simplification to the p-PD algorithm specific to STBCs without a corresponding sacrifice in performance. The proposed algorithm results in significant complexity reductions for moderate to high order modulations.

비정상 트래픽 상황에서 효율적 침입 탐지 시스템(EIDS) 구조 연구 (An Architecture for Efficient Intrusion Detection System of Abnormal Traffic)

  • 권영재;이두만;임홍빈;정재일
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2006년도 하계종합학술대회
    • /
    • pp.207-208
    • /
    • 2006
  • Intrusion detection technology is highlighted in order to establish a safe information-oriented environment. Intrusion detection system can be categorized into anomaly detection and misuse detection according to intrusion detection pattern. In this paper, we propose an architecture to make up for the defect of conventional anomaly intrusion detection. This architecture reduces additional resource consumption and cost by placing the agent in the strategic location in Internet.

  • PDF

디지털 록인 앰프를 이용한 새로운 하이브리드 방식의 단독운전 검출법 (A Novel Hybrid Islanding Detection Method Using Digital Lock-In Amplifier)

  • Ashraf, Muhammad Noman;Choi, Woojin
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2019년도 전력전자학술대회
    • /
    • pp.77-79
    • /
    • 2019
  • Islanding detection is one of the most important issues for the distributed generation (DG) systems connected to the power grid. The conventional passive islanding detection methods inherently have a non-detection zone (NDZ), and active islanding detection methods may deteriorate the power quality of a power system. This paper proposes a novel hybrid islanding detection method based on Digital Lock-In Amplifier with no NDZ by monitoring the harmonics present in the grid. Proposed method detects islanding by passively monitoring the grid voltage harmonics and verify it by injecting small perturbation for only three-line cycles. Unlike FFT for the harmonic extraction, DLA HC have lower computational burden, moreover, DLA can monitor harmonic in real time, whereas, FFT has certain propagation delay. The simulation results are presented to highlight the effectiveness of the proposed technique. In order to prove the performance of the proposed method it is compared with several passive islanding detection methods. The experimental results confirm that the proposed method exhibits outstanding performance as compared to the conventional methods.

  • PDF

에지 클라우드 환경에서 사물인터넷 트래픽 침입 탐지 (Intrusion Detection for IoT Traffic in Edge Cloud)

  • Shin, Kwang-Seong;Youm, Sungkwan
    • 한국정보통신학회논문지
    • /
    • 제24권1호
    • /
    • pp.138-140
    • /
    • 2020
  • As the IoT is applied to home and industrial networks, data generated by the IoT is being processed at the cloud edge. Intrusion detection function is very important because it can be operated by invading IoT devices through the cloud edge. Data delivered to the edge network in the cloud environment is traffic at the application layer. In order to determine the intrusion of the packet transmitted to the IoT, the intrusion should be detected at the application layer. This paper proposes the intrusion detection function at the application layer excluding normal traffic from IoT intrusion detection function. As the proposed method, we obtained the intrusion detection result by decision tree method and explained the detection result for each feature.

구문의미 분석을 활용한 복합 문단구분 시스템에 대한 연구 (Research on the Hybrid Paragraph Detection System Using Syntactic-Semantic Analysis)

  • 강원석
    • 한국멀티미디어학회논문지
    • /
    • 제24권1호
    • /
    • pp.106-116
    • /
    • 2021
  • To increase the quality of the system in the subjective-type question grading and document classification, we need the paragraph detection. But it is not easy because it is accompanied by semantic analysis. Many researches on the paragraph detection solve the detection problem using the word based clustering method. However, the word based method can not use the order and dependency relation between words. This paper suggests the paragraph detection system using syntactic-semantic relation between words with the Korean syntactic-semantic analysis. This system is the hybrid system of word based, concept based, and syntactic-semantic tree based detection. The experiment result of the system shows it has the better result than the word based system. This system will be utilized in Korean subjective question grading and document classification.

Single Shot Detector 기반 타깃 검출 알고리즘 (A Target Detection Algorithm based on Single Shot Detector)

  • 풍원림;조인휘
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 춘계학술발표대회
    • /
    • pp.358-361
    • /
    • 2021
  • In order to improve the accuracy of small target detection more effectively, this paper proposes an improved single shot detector (SSD) target detection and recognition method based on cspdarknet53, which introduces lightweight ECA attention mechanism and Feature Pyramid Network (FPN). First, the original SSD backbone network is replaced with cspdarknet53 to enhance the learning ability of the network. Then, a lightweight ECA attention mechanism is added to the basic convolution block to optimize the network. Finally, FPN is used to gradually fuse the multi-scale feature maps used for detection in the SSD from the deep to the shallow layers of the network to improve the positioning accuracy and classification accuracy of the network. Experiments show that the proposed target detection algorithm has better detection accuracy, and it improves the detection accuracy especially for small targets.

지능적 탐지 모델을 위한 악의적인 코드의 특징 정보 추출 및 분류 (Extraction and classification of characteristic information of malicious code for an intelligent detection model)

  • 황윤철
    • 산업융합연구
    • /
    • 제20권5호
    • /
    • pp.61-68
    • /
    • 2022
  • 최근에는 발전하는 정보통신 기술을 이용하여 악의적인 코드들이 제작되고 있고 이를 기존 탐지 시스템으로는 탐지하는게 역부족인 실정이다. 이러한 지능적이고 악의적인 코드를 정확하고 효율성 있게 탐지하고 대응하기 위해서는 지능적 탐지 모델이 필요하다. 그리고, 탐지 성능을 최대로 높이기 위해서는 악의적인 코드의 주요 특징 정보 집합으로 훈련하는 것이 중요하다. 본 논문에서는 지능적 탐지 모델을 설계하고 모델 훈련에 필요한 데이터를 변환, 차원축소, 특징 선택 단계를 거쳐 주요 특징 정보 집합으로 생성하는 기법을 제안하였다. 그리고 이를 기반으로 악의적인 코드별로 주요 특징 정보를 분류하였다. 또한, 분류된 특징 정보들을 기반으로 변형되거나 새로 등장하는 악의적인 코드를 분석하고 탐지하는데 사용할 수 있는 공통 특징 정보를 도출하였다. 제안된 탐지 모델은 제한된 수의 특성 정보로 학습하여 악의적인 코드를 탐지하기에 탐지 시간과 대응이 빨리 이루어져 피해를 크게 줄일 수 있다. 그리고, 성능 평가 결과값은 학습 알고리즘에 따라 약간 차이가 나지만 악의적인 코드 대부분을 탐지할 수 있음을 평가로 알 수 있었다.

Applications of Capillary Electrophoresis and Microchip Capillary Electrophoresis for Detection of Genetically Modified Organisms

  • Guo, Longhua;Qiu, Bin;Xiao, Xueyang;Chen, Guonan
    • Food Science and Biotechnology
    • /
    • 제18권4호
    • /
    • pp.823-832
    • /
    • 2009
  • In recent years, special concerns have been raised about the safety assessment of foods and food ingredients derived from genetically modified organisms (GMOs). A growing number of countries establish regulations and laws for GMOs in order to allow consumers an informed choice. In this case, a lot of methods have been developed for the detection of GMOs. However, the reproducibility among methods and laboratories is still a problem. Consequently, it is still in great demand for more effective methods. In comparison with the gel electrophoresis, the capillary electrophoresis (CE) technology has some unique advantages, such as high resolution efficiency and less time consumption. Therefore, some CE-based methods have been developed for the detection of GMOs in recent years. All kinds of CE detection methods, such as ultraviolet (UV), laser induced fluorescence (LIF), and chemiluminescence (CL) detection, have been used for GMOs detection. Microchip capillary electrophoresis (MCE) methods have also been used for GMOs detection and they have shown some unique advantages.