• 제목/요약/키워드: Detection Modelling

검색결과 85건 처리시간 0.029초

Precise System Models using Crystal Penetration Error Compensation for Iterative Image Reconstruction of Preclinical Quad-Head PET

  • Lee, Sooyoung;Bae, Seungbin;Lee, Hakjae;Kim, Kwangdon;Lee, Kisung;Kim, Kyeong-Min;Bae, Jaekeon
    • Journal of the Korean Physical Society
    • /
    • 제73권11호
    • /
    • pp.1764-1773
    • /
    • 2018
  • A-PET is a quad-head PET scanner developed for use in small-animal imaging. The dimensions of its volumetric field of view (FOV) are $46.1{\times}46.1{\times}46.1mm^3$ and the gap between the detector modules has been minimized in order to provide a highly sensitive system. However, such a small FOV together with the quad-head geometry causes image quality degradation. The main factor related to image degradation for the quad-head PET is the mispositioning of events caused by the penetration effect in the detector. In this paper, we propose a precise method for modelling the system at the high spatial resolution of the A-PET using a LOR (line of response) based ML-EM (maximum likelihood expectation maximization) that allows for penetration effects. The proposed system model provides the detection probability of every possible ray-path via crystal sampling methods. For the ray-path sampling, the sub-LORs are defined by connecting the sampling points of the crystal pair. We incorporate the detection probability of each sub-LOR into the model by calculating the penetration effect. For comparison, we used a standard LOR-based model and a Monte Carlo-based modeling approach, and evaluated the reconstructed images using both the National Electrical Manufacturers Association NU 4-2008 standards and the Geant4 Application for Tomographic Emission simulation toolkit (GATE). An average full width at half maximum (FWHM) at different locations of 1.77 mm and 1.79 mm are obtained using the proposed system model and standard LOR system model, which does not include penetration effects, respectively. The standard deviation of the uniform region in the NEMA image quality phantom is 2.14% for the proposed method and 14.3% for the LOR system model, indicating that the proposed model out-performs the standard LOR-based model.

에지 센서티브 이미지 보간 (An Edge Sensitive Image Interpolation)

  • 박세희;김용하;이상훈
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제15권4호
    • /
    • pp.294-298
    • /
    • 2009
  • 본 연구에서는 에지 성분의 추출을 보다 섬세하게 처리함으로써 이미지 화질을 개선하기 위한 방법을 제안한다. 제안 방법은 고전적인 보간을 응용한 ESII(Edge Sensitive Image Interpolation)으로 보간 커널 식에서 고정된 매개 변수를 사용하지 않고 주변 화소 값으로부터 적절한 정보를 얻어내서 매 화소마다 매개변수를 변화시킨다. LSE(Least Square Error)를 이용하여 CME(Camera Modelling Error)를 최소화 하도록 보간 할 화소 값을 결정함으로써 이미지를 복원하며, 기존 방법에 비교하여 객관적, 주관적 화질이 우수함을 실험, 제시하였으며 또한 영상을 1차원 정보로 분리하여 고려한 결과 계산상의 복잡도를 줄이는 효과를 기대할 수 있다.

Virtual Design and Construction (VDC)-Aided System for Logistics Monitoring: Supply Chains in Liquefied Natural Gas (LNG) Plant Construction

  • Moon, Sungkon;Chi, Hung-Lin;Forlani, John;Wang, Xiangyu
    • 국제학술발표논문집
    • /
    • The 6th International Conference on Construction Engineering and Project Management
    • /
    • pp.195-199
    • /
    • 2015
  • Many conventional management methods have emphasized the minimization of required resources along the supply chain. Accordingly, this paper presents a proposed method called the Virtual Design and Construction (VDC)-aided system. It is based on object-oriented resource control, in order to accomplish a feed-forward control monitoring supply chain logistics. The system is supported by two main parts: (1) IT-based Technologies; and (2) VDC Models. They enable the system to convey proactive information from the detection technology to its linked visualization. The paper includes a field study as the system's pre-test: the Scaffolding Works in a LNG Mega Project. The study demonstrates a system of real-time productivity monitoring by use of the RFIDbased Mobile Information Hub. The on-line 'productivity dashboard' provides an opportunity to display the continuing processes for each work-package. This research project offers the observed opportunities created by the developed system. Future work will entail research experiments aimed towards system validation.

  • PDF

지형공간정보 기반의 침투위험도 예측 모델을 이용한 최적침투지역 분석 (Analysis of Infiltration Area using Prediction Model of Infiltration Risk based on Geospatial Information)

  • 신내호;오명호;최호림;정동윤;이용웅
    • 한국군사과학기술학회지
    • /
    • 제12권2호
    • /
    • pp.199-205
    • /
    • 2009
  • A simple and effective analysis method is presented for predicting the best infiltration area. Based on geospatial information, numerical estimation barometer for degree of infiltration risk has been derived. The dominant geospatial features influencing infiltration risk have been found to be area altitude, degree of surface gradient, relative direction of surface gradient to the surveillance line, degree of surface gradient repetition, regional forest information. Each feature has been numerically expressed corresponding to the degree of infiltration risk of that area. Four different detection probability maps of infiltration risk for the surveillance area are drawn on the actual map with respect to the numerically expressed five dominant factors of infiltration risks. By combining the four detection probability maps, the complete picture of thr best infiltration area has been drawn. By using the map and the analytic method the effectiveness of surveillance operation can be improved.

Land Use Feature Extraction and Sprawl Development Prediction from Quickbird Satellite Imagery Using Dempster-Shafer and Land Transformation Model

  • Saharkhiz, Maryam Adel;Pradhan, Biswajeet;Rizeei, Hossein Mojaddadi;Jung, Hyung-Sup
    • 대한원격탐사학회지
    • /
    • 제36권1호
    • /
    • pp.15-27
    • /
    • 2020
  • Accurate knowledge of land use/land cover (LULC) features and their relative changes over upon the time are essential for sustainable urban management. Urban sprawl growth has been always also a worldwide concern that needs to carefully monitor particularly in a developing country where unplanned building constriction has been expanding at a high rate. Recently, remotely sensed imageries with a very high spatial/spectral resolution and state of the art machine learning approaches sent the urban classification and growth monitoring to a higher level. In this research, we classified the Quickbird satellite imagery by object-based image analysis of Dempster-Shafer (OBIA-DS) for the years of 2002 and 2015 at Karbala-Iraq. The real LULC changes including, residential sprawl expansion, amongst these years, were identified via change detection procedure. In accordance with extracted features of LULC and detected trend of urban pattern, the future LULC dynamic was simulated by using land transformation model (LTM) in geospatial information system (GIS) platform. Both classification and prediction stages were successfully validated using ground control points (GCPs) through accuracy assessment metric of Kappa coefficient that indicated 0.87 and 0.91 for 2002 and 2015 classification as well as 0.79 for prediction part. Detail results revealed a substantial growth in building over fifteen years that mostly replaced by agriculture and orchard field. The prediction scenario of LULC sprawl development for 2030 revealed a substantial decline in green and agriculture land as well as an extensive increment in build-up area especially at the countryside of the city without following the residential pattern standard. The proposed method helps urban decision-makers to identify the detail temporal-spatial growth pattern of highly populated cities like Karbala. Additionally, the results of this study can be considered as a probable future map in order to design enough future social services and amenities for the local inhabitants.

Modelling land degradation in the mountainous areas

  • Shrestha, D.P.;Zinck, J.A.;Ranst, E. Van
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.817-819
    • /
    • 2003
  • Land degradation is a crucial issue in mountainous areas and is manifested in a variety of processes. For its assessment, application of existing models is not straightforward. In addition, data availability might be a problem. In this paper, a procedure for land degradation assessment is described, which follows a four-step approach: (1) detection, inventory and mapping of land degradation features, (2) assessing the magnitude of soil loss, (3) study of causal factors, and (4) hazard assessment by applying decision trees. This approach is applied to a case study in the Middle Mountain region of Nepal. The study shows that individual mass movement features such as debris slides and slumps can be easily mapped by photo interpretation techniques. Application of soil loss estimation models helps get insight on the magnitude of soil losses. In the study area soil losses are higher in rainfed crops on sloping terraces (highest soil loss is 32 tons/ha/yr) and minimal under dense forest and in irrigated rice fields (less than 1 ton/ha/yr). However there is high frequency of slope failures in the form of slumps in the rice fields. Debris slides are more common on south-facing slopes under rainfed agriculture or in degraded forest. Field evidences and analysis of causal factors for land degradation helps in building decision trees, the use of which for modelling land degradation has the advantage that attributes can be ranked and tested according to their importance. In addition, decision trees are simple to construct, easy to implement and very flexible in adaptations.

  • PDF

Filtering and Intrusion Detection Approach for Secured Reconfigurable Mobile Systems

  • Idriss, Rim;Loukil, Adlen;Khalgui, Mohamed;Li, Zhiwu;Al-Ahmari, Abdulrahman
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권5호
    • /
    • pp.2051-2066
    • /
    • 2017
  • This paper deals with reconfigurable secured mobile systems where the reconfigurability has the potential of providing a required adaptability to change the system requirements. The reconfiguration scenario is presented as a run-time automatic operation which allows security mechanisms and the addition-removal-update of software tasks. In particular, there is a definite requirement for filtering and intrusion detection mechanisms that will use fewer resources and also that will improve the security on the secured mobile devices. Filtering methods are used to control incoming traffic and messages, whereas, detection methods are used to detect malware events. Nevertheless, when different reconfiguration scenarios are applied at run-time, new security threats will be emerged against those systems which need to support multiple security objectives: Confidentiality, integrity and availability. We propose in this paper a new approach that efficiently detects threats after reconfigurable scenarios and which is based on filtering and intrusion detection methods. The paper's contribution is applied to Android where the evaluation results demonstrate the effectiveness of the proposed middleware in order to detect the malicious events on reconfigurable secured mobile systems and the feasibility of running and executing such a system with the proposed solutions.

Optimization-based method for structural damage detection with consideration of uncertainties- a comparative study

  • Ghiasi, Ramin;Ghasemi, Mohammad Reza
    • Smart Structures and Systems
    • /
    • 제22권5호
    • /
    • pp.561-574
    • /
    • 2018
  • In this paper, for efficiently reducing the computational cost of the model updating during the optimization process of damage detection, the structural response is evaluated using properly trained surrogate model. Furthermore, in practice uncertainties in the FE model parameters and modelling errors are inevitable. Hence, an efficient approach based on Monte Carlo simulation is proposed to take into account the effect of uncertainties in developing a surrogate model. The probability of damage existence (PDE) is calculated based on the probability density function of the existence of undamaged and damaged states. The current work builds a framework for Probability Based Damage Detection (PBDD) of structures based on the best combination of metaheuristic optimization algorithm and surrogate models. To reach this goal, three popular metamodeling techniques including Cascade Feed Forward Neural Network (CFNN), Least Square Support Vector Machines (LS-SVMs) and Kriging are constructed, trained and tested in order to inspect features and faults of each algorithm. Furthermore, three wellknown optimization algorithms including Ideal Gas Molecular Movement (IGMM), Particle Swarm Optimization (PSO) and Bat Algorithm (BA) are utilized and the comparative results are presented accordingly. Furthermore, efficient schemes are implemented on these algorithms to improve their performance in handling problems with a large number of variables. By considering various indices for measuring the accuracy and computational time of PBDD process, the results indicate that combination of LS-SVM surrogate model by IGMM optimization algorithm have better performance in predicting the of damage compared with other methods.

A vibration based acoustic wave propagation technique for assessment of crack and corrosion induced damage in concrete structures

  • Kundu, Rahul Dev;Sasmal, Saptarshi
    • Structural Engineering and Mechanics
    • /
    • 제78권5호
    • /
    • pp.599-610
    • /
    • 2021
  • Early detection of small concrete crack or reinforcement corrosion is necessary for Structural Health Monitoring (SHM). Global vibration based methods are advantageous over local methods because of simple equipment installation and cost efficiency. Among vibration based techniques, FRF based methods are preferred over modal based methods. In this study, a new coupled method using frequency response function (FRF) and proper orthogonal modes (POM) is proposed by using the dynamic characteristic of a damaged beam. For the numerical simulation, wave finite element (WFE), coupled with traditional finite element (FE) method is used for effectively incorporating the damage related information and faster computation. As reported in literature, hybrid combination of wave function based wave finite element method and shape function based finite element method can addresses the mid frequency modelling difficulty as it utilises the advantages of both the methods. It also reduces the dynamic matrix dimension. The algorithms are implemented on a three-dimensional reinforced concrete beam. Damage is modelled and studied for two scenarios, i.e., crack in concrete and rebar corrosion. Single and multiple damage locations with different damage length are also considered. The proposed methodology is found to be very sensitive to both single- and multiple- damage while being computationally efficient at the same time. It is observed that the detection of damage due to corrosion is more challenging than that of concrete crack. The similarity index obtained from the damage parameters shows that it can be a very effective indicator for appropriately indicating initiation of damage in concrete structure in the form of spread corrosion or invisible crack.

가상 모델을 이용한 움직임 추출 알고리즘 (Movement Detection Algorithm Using Virtual Skeleton Model)

  • 주영훈;김세진
    • 한국지능시스템학회논문지
    • /
    • 제18권6호
    • /
    • pp.731-736
    • /
    • 2008
  • 본 논문에서는, 가상 모델을 이용한 움직임 추출 방법을 제안한다. 제안한 방법은 첫 번째, 기존에 제안된 방법으로써 RGB 칼라 모델을 이용하여 전경 영역에 나타나는 에러 값을 제거하고, HSI 칼라 모델을 이용하여 불필요한 정보 값을 제거한다. 두 번째, 사람 10명의 신체 구조비를 이용하여 가상 모델을 생성한다. 그 때, 생성된 가상 모델을 추출된 영역에 매칭시키고, 원 탐색 기법을 이용하여 전경영역의 실제 인간의 머리에 대한 얼굴 실루엣을 추출한다. 세 번째 추출된 정보들을 이용하여 mean-shift 알고리즘에 적용시켜 물체를 추적한다. 마지막으로, 본 논문에서 제안한 알고리즘은 복잡하고 다양한 환경에서 실험을 통해 그 응용 가능성을 증명한다.