• Title/Summary/Keyword: Detection Methodology

Search Result 607, Processing Time 0.029 seconds

Training a semantic segmentation model for cracks in the concrete lining of tunnel (터널 콘크리트 라이닝 균열 분석을 위한 의미론적 분할 모델 학습)

  • Ham, Sangwoo;Bae, Soohyeon;Kim, Hwiyoung;Lee, Impyeong;Lee, Gyu-Phil;Kim, Donggyou
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.549-558
    • /
    • 2021
  • In order to keep infrastructures such as tunnels and underground facilities safe, cracks of concrete lining in tunnel should be detected by regular inspections. Since regular inspections are accomplished through manual efforts using maintenance lift vehicles, it brings about traffic jam, exposes works to dangerous circumstances, and deteriorates consistency of crack inspection data. This study aims to provide methodology to automatically extract cracks from tunnel concrete lining images generated by the existing tunnel image acquisition system. Specifically, we train a deep learning based semantic segmentation model with open dataset, and evaluate its performance with the dataset from the existing tunnel image acquisition system. In particular, we compare the model performance in case of using all of a public dataset, subset of the public dataset which are related to tunnel surfaces, and the tunnel-related subset with negative examples. As a result, the model trained using the tunnel-related subset with negative examples reached the best performance. In the future, we expect that this research can be used for planning efficient model training strategy for crack detection.

A Study on Verification of Equivalence and Effectiveness of Non-Pharmacologic Dementia Prevention and Early Detection Contents : Non-Randomly Equivalent Design

  • Jeong, Hyun-Seok;Kim, Oh-Lyong;Koo, Bon-Hoon;Kim, Ki-Hyun;Kim, Gi-Hwan;Bai, Dai-Seg;Kim, Ji-Yean;Chang, Mun-Seon;Kim, Hye-Geum
    • Journal of Korean Neurosurgical Society
    • /
    • v.65 no.2
    • /
    • pp.315-324
    • /
    • 2022
  • Objective : The aim of this study was to verify the equivalence and effectiveness of the tablet-administered Korean Repeatable Battery for the Assessment of Neuropsychological Status (K-RBANS) for the prevention and early detection of dementia. Methods : Data from 88 psychiatry and neurology patient samples were examined to evaluate the equivalence between tablet and paper administrations of the K-RBANS using a non-randomly equivalent group design. We calculated the prediction scores of the tablet-administered K-RBANS based on demographics and covariate-test scores for focal tests using norm samples and tested format effects. In addition, we compared the receiver operating characteristic curves to confirm the effectiveness of the K-RBANS for preventing and detecting dementia. Results : In the analysis of raw scores, line orientation showed a significant difference (t=-2.94, p<0.001), and subtests showed small to large effect sizes (0.04-0.86) between paper- and tablet-administered K-RBANS. To investigate the format effect, we compared the predicted scaled scores of the tablet sample to the scaled scores of the norm sample. Consequently, a small effect size (d≤0.20) was observed in most of the subtests, except word list and story recall, which showed a medium effect size (d=0.21), while picture naming and subtests of delayed memory showed significant differences in the one-sample t-test. In addition, the area under the curve of the total scale index (TSI) (0.827; 95% confidence interval, 0.738-0.916) was higher than that of the five indices, ranging from 0.688 to 0.820. The sensitivity and specificity of TSI were 80% and 76%, respectively. Conclusion : The overall results of this study suggest that the tablet-administered K-RBANS showed significant equivalence to the norm sample, although some subtests showed format effects, and it may be used as a valid tool for the brief screening of patients with neuropsychological disorders in Korea.

Statistical Techniques to Detect Sensor Drifts (센서드리프트 판별을 위한 통계적 탐지기술 고찰)

  • Seo, In-Yong;Shin, Ho-Cheol;Park, Moon-Ghu;Kim, Seong-Jun
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.3
    • /
    • pp.103-112
    • /
    • 2009
  • In a nuclear power plant (NPP), periodic sensor calibrations are required to assure sensors are operating correctly. However, only a few faulty sensors are found to be calibrated. For the safe operation of an NPP and the reduction of unnecessary calibration, on-line calibration monitoring is needed. In this paper, principal component-based Auto-Associative support vector regression (PCSVR) was proposed for the sensor signal validation of the NPP. It utilizes the attractive merits of principal component analysis (PCA) for extracting predominant feature vectors and AASVR because it easily represents complicated processes that are difficult to model with analytical and mechanistic models. With the use of real plant startup data from the Kori Nuclear Power Plant Unit 3, SVR hyperparameters were optimized by the response surface methodology (RSM). Moreover the statistical techniques are integrated with PCSVR for the failure detection. The residuals between the estimated signals and the measured signals are tested by the Shewhart Control Chart, Exponentially Weighted Moving Average (EWMA), Cumulative Sum (CUSUM) and generalized likelihood ratio test (GLRT) to detect whether the sensors are failed or not. This study shows the GLRT can be a candidate for the detection of sensor drift.

A Study on the Fraud Detection for Electronic Prepayment using Machine Learning (머신러닝을 이용한 선불전자지급수단의 이상금융거래 탐지 연구)

  • Choi, Byung-Ho;Cho, Nam-Wook
    • The Journal of Society for e-Business Studies
    • /
    • v.27 no.2
    • /
    • pp.65-77
    • /
    • 2022
  • Due to the recent development in electronic financial services, transactions of electronic prepayment are rapidly growing, leading to growing fraud attempts. This paper proposes a methodology that can effectively detect fraud transactions in electronic prepayment by machine learning algorithms, including support vector machines, decision trees, and artificial neural networks. Actual transaction data of electronic prepayment services were collected and preprocessed to extract the most relevant variables from raw data. Two different approaches were explored in the paper. One is a transaction-based approach, and the other is a user ID-based approach. For the transaction-based approach, the first model is primarily based on raw data features, while the second model uses extra features in addition to the first model. The user ID-based approach also used feature engineering to extract and transform the most relevant features. Overall, the user ID-based approach showed a better performance than the transaction-based approach, where the artificial neural networks showed the best performance. The proposed method could be used to reduce the damage caused by financial accidents by detecting and blocking fraud attempts.

Outlier Detection and Labeling of Ship Main Engine using LSTM-AutoEncoder (LSTM-AutoEncoder를 활용한 선박 메인엔진의 이상 탐지 및 라벨링)

  • Dohee Kim;Yeongjae Han;Hyemee Kim;Seong-Phil Kang;Ki-Hun Kim;Hyerim Bae
    • The Journal of Bigdata
    • /
    • v.7 no.1
    • /
    • pp.125-137
    • /
    • 2022
  • The transportation industry is one of the important industries due to the geographical requirements surrounded by the sea on three sides of Korea and the problem of resource poverty, which relies on imports for most of its resource consumption. Among them, the proportion of the shipping industry is large enough to account for most of the transportation industry, and maintenance in the shipping industry is also important in improving the operational efficiency and reducing costs of ships. However, currently, inspections are conducted every certain period of time for maintenance of ships, resulting in time and cost, and the cause is not properly identified. Therefore, in this study, the proposed methodology, LSTM-AutoEncoder, is used to detect abnormalities that may cause ship failure by considering the time of actual ship operation data. In addition, clustering is performed through clustering, and the potential causes of ship main engine failure are identified by grouping outlier by factor. This enables faster monitoring of various information on the ship and identifies the degree of abnormality. In addition, the current ship's fault monitoring system will be equipped with a concrete alarm point setting and a fault diagnosis system, and it will be able to help find the maintenance time.

Fault Detection Technique for PVDF Sensor Based on Support Vector Machine (서포트벡터머신 기반 PVDF 센서의 결함 예측 기법)

  • Seung-Wook Kim;Sang-Min Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.5
    • /
    • pp.785-796
    • /
    • 2023
  • In this study, a methodology for real-time classification and prediction of defects that may appear in PVDF(Polyvinylidene fluoride) sensors, which are widely used for structural integrity monitoring, is proposed. The types of sensor defects appearing according to the sensor attachment environment were classified, and an impact test using an impact hammer was performed to obtain an output signal according to the defect type. In order to cleary identify the difference between the output signal according to the defect types, the time domain statistical features were extracted and a data set was constructed. Among the machine learning based classification algorithms, the learning of the acquired data set and the result were analyzed to select the most suitable algorithm for detecting sensor defect types, and among them, it was confirmed that the highest optimization was performed to show SVM(Support Vector Machine). As a result, sensor defect types were classified with an accuracy of 92.5%, which was up to 13.95% higher than other classification algorithms. It is believed that the sensor defect prediction technique proposed in this study can be used as a base technology to secure the reliability of not only PVDF sensors but also various sensors for real time structural health monitoring.

Method of Monitoring Forest Vegetation Change based on Change of MODIS NDVI Time Series Pattern (MODIS NDVI 시계열 패턴 변화를 이용한 산림식생변화 모니터링 방법론)

  • Jung, Myung-Hee;Lee, Sang-Hoon;Chang, Eun-Mi;Hong, Sung-Wook
    • Spatial Information Research
    • /
    • v.20 no.4
    • /
    • pp.47-55
    • /
    • 2012
  • Normalized Difference Vegetation Index (NDVI) has been used to measure and monitor plant growth, vegetation cover, and biomass from multispectral satellite data. It is also a valuable index in forest applications, providing forest resource information. In this research, an approach for monitoring forest change using MODIS NDVI time series data is explored. NDVI difference-based approaches for a specific point in time have possible accuracy problems and are lacking in monitoring long-term forest cover change. It means that a multi-time NDVI pattern change needs to be considered. In this study, an efficient methodology to consider long-term NDVI pattern is suggested using a harmonic model. The suggested method reconstructs MODIS NDVI time series data through application of the harmonic model, which corrects missing and erroneous data. Then NDVI pattern is analyzed based on estimated values of the harmonic model. The suggested method was applied to 49 NDVI time series data from Aug. 21, 2009 to Sep. 6, 2011 and its usefulness was shown through an experiment.

For the Acquisition of Customers' Emotional Elements in the Service Design by SOMC: Simultaneous Observation Method based on Cooperation

  • Seo, Mi-Young;Lee, Eun-Jong
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.1
    • /
    • pp.23-32
    • /
    • 2012
  • Objective: This research proposes a methodology, which validates a grasp of the customers' emotions in the service design area. Background: As the era of service design has taken its approach, the need for a deliberate design that would reflect the customer's experience had emerged in the area of service. Therefore, a variety of methodologies has been adopted in the field of service design with the purpose of discovery of the customers' needs. Even though the importance of an emotion-sentient research of a service experience increases, its research progress remains to be inadequate in comparison to all the other areas. Method: Having had taken some resources from the emotional studies under other areas of expertise as a base, the concept of volatility of emotions has been introduced as the core element of this research, further followed by an elaboration of its special characteristics. The observation technique under Stakeholder's system: SOMC(Simultaneous Observation Method based on Cooperation) has been proposed in this study as it presents an effective way to grasp the concept of volatile emotions in contrast to the previously existent types of methodologies. Results: The SOMC rather supplements the existing research methods than substitutes the previous ones. In other words, although the existing research system allowed emotion detection, it was difficult to capture the change of momentary and fickle emotions. On the opposite, the SOMC provides a condition allowing a sufficient grasp of the customer's emotions and facilitates emotional capture. Conclusion: For that reason, it is hoped that this piece of research represents a valuable and effective approach in terms of grasping the true needs of the customers on the emotional level, which will in its turn contribute to the improvement of the service quality in the midst of a complicated service condition. Application: Moreover, the purpose of this research is that in its outcome it may serve as a sufficient contribution to the area of emotional studies within the field of service design.

Detection of Epileptic Seizure Based on Peak Using Sequential Increment Method (점증적 증가를 이용한 첨점 기반의 간질 검출)

  • Lee, Sang-Hong
    • Journal of Digital Convergence
    • /
    • v.13 no.10
    • /
    • pp.287-293
    • /
    • 2015
  • This study proposed signal processing techniques and neural network with weighted fuzzy membership functions(NEWFM) to detect epileptic seizure from EEG signals. This study used wavelet transform(WT), sequential increment method, and phase space reconstruction(PSR) as signal processing techniques. In the first step of signal processing techniques, wavelet coefficients were extracted from EEG signals using the WT. In the second step, sequential increment method was used to extract peaks from the wavelet coefficients. In the third step, 3D diagram was produced from the extracted peaks using the PSR. The Euclidean distances and statistical methods were used to extract 16 features used as inputs for NEWFM. The proposed methodology shows that accuracy, specificity, and sensitivity are 97.5%, 100%, 95% with 16 features, respectively.

Flood Alert and Warning Scheme Based on Intensity-Duration-Quantity (IDQ) Curve considering Antecedant Moisture Condition (선행함수지수를 고려한 강우강도-지속시간-홍수량(IDQ) 곡선기반의 홍수예경보기법)

  • Kim, Jin-Gyeom;Kang, Boosik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.6
    • /
    • pp.1269-1276
    • /
    • 2015
  • The methodology of utilizing Intensity-Duration-flood Quantity (IDQ) curve for flood alert and warning was introduced and its performance was evaluated. For this purpose the lumped parameter model was calibrated and validated for gauged basin data set and the index precipitation equivalent to alert and warning flood was estimated. The index precipitation and IDQ curves associated by three different Antecedant Moisture Conditions (AMCs) are made provision for various possible flood scenarios. The test basin is Wonju-cheon basin ($94.4km^2$) located in Gangwon province, Korea. The IDQ curves corresponding to alert (50% of design flood level) and warning (70% of design flood level) level was estimated using the Clark unit hydrograph based lumped parameter model. The performance evaluation showed 0.704 of POD (Probability of Detection), 0.136 of FAR (False Alarm Ratio), and 0.633 of CSI (Critical Success Index), which is improved from the result of IDQ with single fixed AMC.