• Title/Summary/Keyword: Detection Effectiveness Analysis

Search Result 333, Processing Time 0.022 seconds

Detection of multi-type data anomaly for structural health monitoring using pattern recognition neural network

  • Gao, Ke;Chen, Zhi-Dan;Weng, Shun;Zhu, Hong-Ping;Wu, Li-Ying
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.129-140
    • /
    • 2022
  • The effectiveness of system identification, damage detection, condition assessment and other structural analyses relies heavily on the accuracy and reliability of the measured data in structural health monitoring (SHM) systems. However, data anomalies often occur in SHM systems, leading to inaccurate and untrustworthy analysis results. Therefore, anomalies in the raw data should be detected and cleansed before further analysis. Previous studies on data anomaly detection mainly focused on just single type of data anomaly for denoising or removing outliers, meanwhile, the existing methods of detecting multiple data anomalies are usually time consuming. For these reasons, recognising multiple anomaly patterns for real-time alarm and analysis in field monitoring remains a challenge. Aiming to achieve an efficient and accurate detection for multi-type data anomalies for field SHM, this study proposes a pattern-recognition-based data anomaly detection method that mainly consists of three steps: the feature extraction from the long time-series data samples, the training of a pattern recognition neural network (PRNN) using the features and finally the detection of data anomalies. The feature extraction step remarkably reduces the time cost of the network training, making the detection process very fast. The performance of the proposed method is verified on the basis of the SHM data of two practical long-span bridges. Results indicate that the proposed method recognises multiple data anomalies with very high accuracy and low calculation cost, demonstrating its applicability in field monitoring.

Fault Detection of a Proposed Three-Level Inverter Based on a Weighted Kernel Principal Component Analysis

  • Lin, Mao;Li, Ying-Hui;Qu, Liang;Wu, Chen;Yuan, Guo-Qiang
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.182-189
    • /
    • 2016
  • Fault detection is the research focus and priority in this study to ensure the high reliability of a proposed three-level inverter. Kernel principal component analysis (KPCA) has been widely used for feature extraction because of its simplicity. However, highlighting useful information that may be hidden under retained KPCs remains a problem. A weighted KPCA is proposed to overcome this shortcoming. Variable contribution plots are constructed to evaluate the importance of each KPC on the basis of sensitivity analysis theory. Then, different weighting values of KPCs are set to highlight the useful information. The weighted statistics are evaluated comprehensively by using the improved feature eigenvectors. The effectiveness of the proposed method is validated. The diagnosis results of the inverter indicate that the proposed method is superior to conventional KPCA.

Developing an Intrusion Detection Framework for High-Speed Big Data Networks: A Comprehensive Approach

  • Siddique, Kamran;Akhtar, Zahid;Khan, Muhammad Ashfaq;Jung, Yong-Hwan;Kim, Yangwoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.4021-4037
    • /
    • 2018
  • In network intrusion detection research, two characteristics are generally considered vital to building efficient intrusion detection systems (IDSs): an optimal feature selection technique and robust classification schemes. However, the emergence of sophisticated network attacks and the advent of big data concepts in intrusion detection domains require two more significant aspects to be addressed: employing an appropriate big data computing framework and utilizing a contemporary dataset to deal with ongoing advancements. As such, we present a comprehensive approach to building an efficient IDS with the aim of strengthening academic anomaly detection research in real-world operational environments. The proposed system has the following four characteristics: (i) it performs optimal feature selection using information gain and branch-and-bound algorithms; (ii) it employs machine learning techniques for classification, namely, Logistic Regression, Naïve Bayes, and Random Forest; (iii) it introduces bulk synchronous parallel processing to handle the computational requirements of large-scale networks; and (iv) it utilizes a real-time contemporary dataset generated by the Information Security Centre of Excellence at the University of Brunswick (ISCX-UNB) to validate its efficacy. Experimental analysis shows the effectiveness of the proposed framework, which is able to achieve high accuracy, low computational cost, and reduced false alarms.

Automated Detection Technique for Suspected Copyright Infringement Sites

  • Jeong, Hae Seon;Kwak, Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.12
    • /
    • pp.4889-4908
    • /
    • 2020
  • With the advances in Information Technology (IT), users can download or stream copyrighted works, such as videos, music, and webtoons, at their convenience. Thus, the frequency of use of copyrighted works has increased. Consequently, the number of unauthorized copies and sharing of copyrighted works has also increased. Monitoring is being conducted on sites suspected of conducting copyright infringement activities to reduce copyright holders' damage due to unauthorized sharing of copyrighted works. However, suspected copyright infringement sites respond by changing their domains or blocking access requests. Although research has been conducted for improving the effectiveness of suspected copyright infringement site detection by defining suspected copyright infringement sites' response techniques as a lifecycle step, there is a paucity of studies on automation techniques for lifecycle detection. This has reduced the accuracy of lifecycle step detection on suspected copyright infringement sites, which change domains and lifecycle steps in a short period of time. Thus, in this paper, an automated detection technique for suspected copyright infringement sites is proposed for efficient detection and response to suspected copyright infringement sites. Using our proposed technique, the response to each lifecycle step can be effectively conducted by automatically detecting the lifecycle step.

Evaluation of a Tuberculosis Control Program at Community Health Centers (보건소 결핵관리사업 평가)

  • Hwang, Eun-Jeong
    • Journal of Korean Public Health Nursing
    • /
    • v.21 no.2
    • /
    • pp.241-251
    • /
    • 2007
  • Purpose: To identify the effects on tuberculosis mortality of a tuberculosis control program conducted at 108 community health centers in terms of structure and process. Methods: The dependent variable was tuberculosis mortality, and the independent variables were the structure(type of centers, staff, nurses, doctors, budget) and process(chest X-ray checking, immunization, case detection, health education, patients registering & managing) of the tuberculosis control programs at the community health centers. Data were analyzed using descriptive analysis and stepwise regression analysis. Result: Tuberculosis morality was positively correlated with type of centers(rural area)(p<0.01), but negatively correlated with type of centers(large cities) (p<0.01), (middle cities)(p<0.05), staff FTE(p<0.05), and number of nurses(p<0.05). Regression analysis indicated that type of centers(rural area)($\beta$=0.457) and case detection($\beta$=0.234) had a significant effect on tuberculosis mortality. Conclusion: Ultimately, this study will provide information to improve the effectiveness of tuberculosis control programs in community health centers.

  • PDF

A Development of the DIRCM Effectiveness Analysis Simulator based on DEVS (DEVS 기반 DIRCM 효과도 분석 시뮬레이터 개발)

  • Shin, Baek-Cheon;Hur, Jang-Wook;Kim, Tag-Gon;Kim, Mi-Jeong
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.2
    • /
    • pp.115-123
    • /
    • 2018
  • we analyzed simulation of the effectiveness for one or two DIRCM on a helicopter. The survival rate of helicopter followed increase of the deception rate of DIRCM. When the deception rate was over 70% at 100% detection rate, the survival rate was 10~30% when one DIRCM was installed and the survival rate was 70~80% when two DIRCMs were installed. When the detection rate was over 70% at 100% deception rate the survival rate was 10~30% case of one DIRCM was installed. survival rate was 20~30% when two were installed. Survival rate of 70~90% was observed with one DIRCM when the deception rate and detection rate were 100%, and 100% with two DIRCMs.

Effectiveness Analysis for Survival Probability of a Surface Warship Considering Static and Mobile Decoys (부유식 및 자항식 기만기의 혼합 운용을 고려한 수상함의 생존율에 대한 효과도 분석)

  • Shin, MyoungIn;Cho, Hyunjin;Lee, Jinho;Lim, Jun-Seok;Lee, Seokjin;Kim, Wan-Jin;Kim, Woo Shik;Hong, Wooyoung
    • Journal of the Korea Society for Simulation
    • /
    • v.25 no.3
    • /
    • pp.53-63
    • /
    • 2016
  • We consider simulation study combining static and mobile decoys for survivability of a surface warship against torpedo attack. It is assumed that an enemy torpedo is a passive acoustic homing torpedo and detects a target within its maximum target detection range and search beam angle by computing signal excess via passive sonar equation, and a warship conducts an evasive maneuvering with deploying static and mobile decoys simultaneously to counteract a torpedo attack. Suggesting the four different decoy deployment plans to achieve the best plan, we analyze an effectiveness for a warship's survival probability through Monte Carlo simulation, given a certain experimental environment. Furthermore, changing the speed and the source level of decoys, the maximum torpedo detection range of warship, and the maximum target detection range of torpedo, we observe the corresponding survival probabilities, which can provide the operational capabilities of an underwater defense system.

DEVS-Based Simulation Model Development for Composite Warfare Analysis of Naval Warship (함정의 복합전 효과도 분석을 위한 DEVS 기반 시뮬레이션 모델 개발)

  • Mi Jang;Hee-Mun Park;Kyung-Min Seo
    • Journal of the Korea Society for Simulation
    • /
    • v.32 no.4
    • /
    • pp.41-58
    • /
    • 2023
  • As naval warfare changes to composite warfare that includes simultaneous engagements against surface, underwater, and air enemies, performance and tactical analysis are required to respond to naval warfare. In particular, for practical analysis of composite warfare, it is necessary to study engagement simulations that can appropriately utilize the limited performance resources of the detection system. This paper proposes a DEVS (Discrete Event Systems Specifications)-based simulation model for composite warfare analysis. The proposed model contains generalized models of combat platforms and armed objects to simulate various complex warfare situations. In addition, we propose a detection performance allocation algorithm that can be applied to a detection system model, considering the characteristics of composite warfare in which missions must be performed using limited detection resources. We experimented with the effectiveness of composite warfare according to the strength of the detection system's resource allocation, the enemy force's size, and the friendly force's departure location. The simulation results showed the effect of the resource allocation function on engagement time and success. Our model will be used as an engineering basis for analyzing the tactics of warships in various complex warfare situations in the future.

Face Detection Using Support Vector Domain Description in Color Images (컬러 영상에서 Support Vector Domain Description을 이용한 얼굴 검출)

  • Seo Jin;Ko Hanseok
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.1
    • /
    • pp.25-31
    • /
    • 2005
  • In this paper, we present a face detection system using the Support Vector Domain Description (SVDD) in color images. Conventional face detection algorithms require a training procedure using both face and non-face images. In SVDD however we employ only face images for training. We can detect faces in color images from the radius and center pairs of SVDD. We also use Entropic Threshold for extracting the facial feature and sliding window for improved performance while saving processing time. The experimental results indicate the effectiveness and efficiency of the proposed algorithm compared to conventional PCA (Principal Component Analysis)-based methods.

Transaction Mining for Fraud Detection in ERP Systems

  • Khan, Roheena;Corney, Malcolm;Clark, Andrew;Mohay, George
    • Industrial Engineering and Management Systems
    • /
    • v.9 no.2
    • /
    • pp.141-156
    • /
    • 2010
  • Despite all attempts to prevent fraud, it continues to be a major threat to industry and government. Traditionally, organizations have focused on fraud prevention rather than detection, to combat fraud. In this paper we present a role mining inspired approach to represent user behaviour in Enterprise Resource Planning (ERP) systems, primarily aimed at detecting opportunities to commit fraud or potentially suspicious activities. We have adapted an approach which uses set theory to create transaction profiles based on analysis of user activity records. Based on these transaction profiles, we propose a set of (1) anomaly types to detect potentially suspicious user behaviour, and (2) scenarios to identify inadequate segregation of duties in an ERP environment. In addition, we present two algorithms to construct a directed acyclic graph to represent relationships between transaction profiles. Experiments were conducted using a real dataset obtained from a teaching environment and a demonstration dataset, both using SAP R/3, presently the predominant ERP system. The results of this empirical research demonstrate the effectiveness of the proposed approach.