• Title/Summary/Keyword: Detailed vegetation Map

Search Result 28, Processing Time 0.022 seconds

Hierarchical Land Cover Classification using IKONOS and AIRSAR Images (IKONOS와 AIRSAR 영상을 이용한 계층적 토지 피복 분류)

  • Yeom, Jun-Ho;Lee, Jeong-Ho;Kim, Duk-Jin;Kim, Yong-Il
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.4
    • /
    • pp.435-444
    • /
    • 2011
  • The land cover map derived from spectral features of high resolution optical images has low spectral resolution and heterogeneity in the same land cover class. For this reason, despite the same land cover class, the land cover can be classified into various land cover classes especially in vegetation area. In order to overcome these problems, detailed vegetation classification is applied to optical satellite image and SAR(Synthetic Aperture Radar) integrated data in vegetation area which is the result of pre-classification from optical image. The pre-classification and vegetation classification were performed with MLC(Maximum Likelihood Classification) method. The hierarchical land cover classification was proposed from fusion of detailed vegetation classes and non-vegetation classes of pre-classification. We can verify the facts that the proposed method has higher accuracy than not only general SAR data and GLCM(Gray Level Co-occurrence Matrix) texture integrated methods but also hierarchical GLCM integrated method. Especially the proposed method has high accuracy with respect to both vegetation and non-vegetation classification.

A study on the Effective Use of Environmental Information System - focused on the accuracy of raw data - (환경정보체계의 효과적 이용에 관한 고찰 - 원자료의 정확성을 중심으로 -)

  • Lee, Kyoo-Seock
    • Journal of Environmental Impact Assessment
    • /
    • v.7 no.2
    • /
    • pp.27-35
    • /
    • 1998
  • In Korea, the initial installation of GIS requires lots of cost, time, and human efforts. If the accuracy of GIS data does not meet the certain standard for use, the system may not work as expected. So, it needs to be investigated for the accuracy of raw data. However, there is little study for the accuracy of raw data in Korea. Therefore, the purpose of this study is to review the data accuracy of raw data - geologic map, 1:5,000 and 1:25,000 scale topographic map, forest stand map, degree of green naturality(DGN) map, and detailed survey data of DGN map-, which are to be used in Environmental Information System(EIS) in Korea. After this study, some errors in data were surveyed and following conclusions were derived. (1) There is no map data, e. g, wildlife habitat map. (2) Some data are misinterpreted depending on the location in the geologic map. (3) Some data are not updated properly after change of topography in the topographic map or the elevation and location is different depending on the scale.. (4) Some data are not edited properly in the forest stand map, e. g. two attributes in one polygon. (5) DGN classification system does not reflect the characteristic of Korean vegetation community. So, it needs to be refined and restructured.

  • PDF

Habitat Type Classification System of Korean National Parks (국립공원 서식지 유형 분류 체계 구축)

  • Kim, Jeong Eun;Rho, Paik Ho;Lee, Jung Yun;Cho, Hyung Jin;Jin, Seung Nam;Choi, Jin Woo;Myeong, Hyeon Ho
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.2
    • /
    • pp.97-111
    • /
    • 2021
  • This study was conducted to develop a habitat type classification system and its map based on the ecological characteristics of species, spatial type, vegetation, topography, and geological conditions preferred by species. To evaluate the relationships between species and their habitats in Korean national parks, we prepared a classification standard table for systematic classification of habitat types. This classification system divides habitats into 6 low-level and 59 mid-level ecological classes based on habitat structure. The mid-level system divided forest ecosystems into 20 subtypes, stream and wetland ecosystems into 8 types, coastal ecosystems into 7 types, arable land into 6 types, development land into 9 types, and 1 type of marine ecosystem. A habitat classification map was drawn utilizing square images, detailed vegetation maps, and forest stand maps, based on the above habitat classification system, and it covered 1,461 plots spanning 21 national parks. The habitat classification system and survey protocol, which consider domestic habitat conditions, should be further developed and applied to habitat assessment, to enhance the utility of this study.

A study on the Effective Use of Environmental Information System in Korea - focused on the accuracy of raw data - (환경정보체계 구축의 효과적 이용 - 원자료의 정확성을 중심으로 -)

  • 이규석
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 1998.11a
    • /
    • pp.34-36
    • /
    • 1998
  • In Korea, the initial installation of GIS requires lots of cost, time, and human efforts, If the accuracy of GIS data does not meet the certain standard for use, the system may not work as expected. So, it needs to be investigated for the accuracy of raw data. However, there is little study for the accuracy of raw data in Korea. Therefore, the purpose of this study is to review the data accuracy of raw data - geologic map, 1:5,000 and 1:25,000 scale topographic map, forest stand map, degree of green naturality(DGN) map, and detailed survey data of DGN map - for fulfilling the expected use in Korea. After this study, some errors in data were surveyed and following conclusions were derived. (1) There is a lack of data, e. g, wildlife habitat map. (2) Some data are misinterpreted depending on the location in the geologic map. (3) Some data are not updated after change of topography in the topographic map. (4) Some data are not edited properly in the forest stand map. (4) DGN classification system does not reflect the characteristic of Korean vegetation community. So, it needs to be refined and restructured.

  • PDF

How to utilize vegetation survey using drone image and image analysis software

  • Han, Yong-Gu;Jung, Se-Hoon;Kwon, Ohseok
    • Journal of Ecology and Environment
    • /
    • v.41 no.4
    • /
    • pp.114-119
    • /
    • 2017
  • This study tried to analyze error range and resolution of drone images using a rotary wing by comparing them with field measurement results and to analyze stands patterns in actual vegetation map preparation by comparing drone images with aerial images provided by National Geographic Information Institute of Korea. A total of 11 ground control points (GCPs) were selected in the area, and coordinates of the points were identified. In the analysis of aerial images taken by a drone, error per pixel was analyzed to be 0.284 cm. Also, digital elevation model (DEM), digital surface model (DSM), and orthomosaic image were abstracted. When drone images were comparatively analyzed with coordinates of ground control points (GCPs), root mean square error (RMSE) was analyzed as 2.36, 1.37, and 5.15 m in the direction of X, Y, and Z. Because of this error, there were some differences in locations between images edited after field measurement and images edited without field measurement. Also, drone images taken in the stream and the forest and 51 and 25 cm resolution aerial images provided by the National Geographic Information Institute of Korea were compared to identify stands patterns. To have a standard to classify polygons according to each aerial image, image analysis software (eCognition) was used. As a result, it was analyzed that drone images made more precise polygons than 51 and 25 cm resolution images provided by the National Geographic Information Institute of Korea. Therefore, if we utilize drones appropriately according to characteristics of subject, we can have advantages in vegetation change survey and general monitoring survey as it can acquire detailed information and can take images continuously.

Analysis Methology of Detailed Stand Age Classes in Forest Type Map (임상도 작성시 정밀 영급분석기법 연구)

  • Kim, Jeong-Ho
    • Journal of Environmental Science International
    • /
    • v.17 no.6
    • /
    • pp.647-655
    • /
    • 2008
  • The purpose of the study is to find the problems related to the current state of the stand age classes and the method of calculating it defined in the existing forest type map and propose the more accurate method of calculating the stand age classes. The object for the study was selected as the forest scattered around the Geesan village Paju city in Kyunggi province. For the accurate method of calculating the stand age classes, such items as, the type of actual vegetation, establishment of grid-type standard area scaled down at the level of the 5% of the actual area, the types, number, DBH and age of tree found by the plots, were investigated. It was found out actual vegetation was divided into the total 24 types and the 20 types of them belonged to the growing tree areas. As the plots, the 125 places(unit area: $400m^2$) were established the types of the trees found were distributed in the range where the minimum was 1 type, the maximum was 9, the mean was $4.4{\pm}1.5$, and the mode was 4 types. The number of the trees found was distributed in the range where the minimum was 17, the maximum was 125, the mean was $4.4{\pm}1.5$, and the mode was 70. In the DBH, the minimum was 6 cm, the maximum was 30 cm, the mean was 13 cm and the mode was 10 cm. As the result of measuring the age of the 5 trees corresponding to the value of the mode in DBH, selected among the dominant species by the plots, less than 20 years was 17 places, the 115 places were included in the range from 21 to 30 years, and more than 31 years was the 6 places.

The Delineation of Water-Pollutant Buffering Zone for Sustaining Better Drinking Water Quality Using a GIS (GIS를 이용한 상수원 보호를 위한 수변구역 지정에 관한 연구)

  • Kim, Kye-Hyun;Yoon, Ho-Seok;Kwon, Woo-Suk
    • Journal of Environmental Impact Assessment
    • /
    • v.9 no.3
    • /
    • pp.239-248
    • /
    • 2000
  • The aggravating water quality from the expansion of industrialization along with increasing population lead to develop more intensive physical measures to secure better drinking water quality. This study was mainly initiated to establish a water-pollutant buffering zone for the upper stream basin of Paldang--the major source area of drinking water for the metropolitan Seoul and suburban areas with a population more than 13 million. Two different criteria were considered in determining the buffering distance from the edge of the streamflow : 1km-width buffer zone for the special protection area which has been strictly controlled by the conventional laws for the protection of drinking water supply, and 500m-width buffer zone for the rest of the area. To delineate the exact boundaries of the water-pollutant buffering zone, GIS database was created integrating topography, hydrography, cadastral, and other related layers. The newly designated water-pollutant buffering zone would contribute to improve the water quality in a long term along with the conservation of the wet land. More study, however, should be made within the water-pollutant buffering zone such as the detailed survey of the pollutants, vegetation, and ecosystem for more effective management of the buffering zone.

  • PDF

The Case Study of Foreign Scenery Inventory Map and the Applicability of Domestic - focused on macro inventory map - (자연경관 경관도의 국외사례 및 국내 적용가능성 연구 - 거시적 경관관리도를 중심으로 -)

  • Joo, Shin-Ha;Lee, Song-Hee
    • Journal of Korean Society of Rural Planning
    • /
    • v.17 no.3
    • /
    • pp.103-111
    • /
    • 2011
  • The purpose of this study is to review foreign scenic inventory map for the systematic management of natural scenic resources. Several foreign cases were surveyed and analyzed to apply the scenery inventory map in domestic, such as Visual Resource Management(VRM) from United States Bureau of Land Management, Scenery Management System(SMS) from USDA Forest Service and Visual Landscape Inventory(VLI) from British Columbia Ministry of Forest's, that were already established scenery inventory maps. The results are as follows. First, the characteristic of Korean landscape is quite a different from those of north american's, which is much smaller and more complex in topography and land use. So, it would be difficult to apply foreign system directly and we need more researches to our own system. The multi-stepped landscape unit system is highly recommended. Second, scenic quality could be estimated by the pre-built database, such as land forms, vegetation, hydrology and land uses. Historical and cultural attributes should be complemented. Third, existing scenic integrity could be grasped by scenic damage, landscape alteration caused by human activities and land exfoliation. Also, subjective evaluation method should be supplemented by objective criteria through further detailed studies. Finally, about landscape view conditions, landscape control points should be surveyed and established in advance, and viewing distance, viewing frequency, amount of observers and public interests should be considered.

A Case Study for Construction Hazard Zonation Maps and its Application (석회암 지역 재해 등급도 작성 및 응용에 관한 사례 연구)

  • 정의진;윤운상;김중휘;마상준;김정환;이근병
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.165-172
    • /
    • 2002
  • We presents an hazard zonation mapping technique in karst terrain and its assessment. From the detailed engineering geological mapping. Controlling factors of sink hole and limestone cave formation were discussed and 4 main hazard factors affecting hazard potential are identified as follows: prerequisite hazard factor(distributions of pre-existing sink holes and cavities), geomorphological hazard factors(slope gradient, vegetation, and drainage pattern etc.) geological hazard factors(lithology, fracture patterns and geological structures etc.) and hydraulic conditions(hydraulic head, annual fluctuation of ground water table and composition of g/w water). From the construction of hazard zonation map along the Jecheon-Maepo area, and vertical cross-sectional hazard zonations specific tunnel site we suggest hazard zonation rating systems.

  • PDF

Projected Spatial-Temporal changes in carbon reductions of Soil and Vegetation in South Korea under Climate Change, 2000-2100 (기후변화에 따른 식생과 토양에 의한 탄소변화량 공간적 분석)

  • Lee, Dong-Kun;Park, Chan;Oh, Young-Chool
    • Journal of Korean Society of Rural Planning
    • /
    • v.16 no.4
    • /
    • pp.109-116
    • /
    • 2010
  • Climate change is known to affect both natural and managed ecosystems, and will likely impact on the terrestrail carbon balance. This paper reports the effects of climate change on spatial-temporal changes in carbon reductions in South Korea's during 2000-2100. Future carbon (C) stock distributions are simulated for the same period using various spatial data sets including land cover, net primary production(NPP) and leaf area index (LAI) obtained from MODIS(Moderate Resolution Imaging Spectroradiometer), and climate data from Data Assimilation Office(DAO) and Korea Meteorological Administration(KMA). This study attempts to predict future NPP using multiple linear regression and to model dependence of soil respiration on soil temperature. Plants store large amounts of carbon during the growing periods. During 2030-2100, Carbon accumulation in vegetation was increased to $566{\sim}610gC/m^2$/year owing to climate change. On the other hand, soil respiration is a key ecosystem process that releases carbon from the soil in the form of carbon dioxide. The estimated soil respiration spatially ranged from $49gC/m^2$/year to $231gC/m^2$/year in the year of 2010, and correlating well with the reference value. This results include Spatial-Temporal C reduction variation caused by climate change. Therefore this results is more comprehensive than previous results. The uncertainty in this study is still large, but it can be reduced if a detailed map becomes available.