• Title/Summary/Keyword: Detailed region model

Search Result 157, Processing Time 0.019 seconds

Impact of Horizontal Resolution of Regional Climate Model on Precipitation Simulation over the Korean Peninsula (지역 기후 모형을 이용한 한반도 강수 모의에서 수평 해상도의 영향)

  • Lee, Young-Ho;Cha, Dong-Hyun;Lee, Dong-Kyou
    • Atmosphere
    • /
    • v.18 no.4
    • /
    • pp.387-395
    • /
    • 2008
  • The impact of horizontal resolution on a regional climate model was investigated by simulating precipitation over the Korean Peninsula. As a regional climate model, the SNURCM(Seoul National University Regional Climate Model) has 21 sigma layers and includes the NCAR CLM(National Center for Atmospheric Research Community Land Model) for land-surface model, the Grell scheme for cumulus convection, the Simple Ice scheme for explicit moisture, and the MRF(Medium-Range Forecast) scheme for PBL(Planetary Boundary Layer) processing. The SNURCM was performed with 20 km resolution for Korea and 60 km resolution for East Asia during a 20-year period (1980-1999). Although the SNURCM systematically underestimated precipitation over the Korean Peninsula, the increase of model resolution simulated more precipitation in the southern region of the Korean Peninsula, and a more accurate distribution of precipitation by reflecting the effect of topography. The increase of precipitation was produced by more detailed terrain data which has a 10 minute terrain in the 20 km resolution model compared to the 30 minute terrain in the 60 km resolution model. The increase in model resolution and more detailed terrain data played an important role in generating more precipitation over the Korean Peninsula. While the high resolution model with the same terrain data resulted in increasing of precipitation over the Korean Peninsula including the adjoining sea, the difference of the terrain data resolution only influenced the precipitation distribution of the mountainous area by increasing the amount of non-convective rain. In conclusion, the regional climate model (SNURCM) with higher resolution simulated more precipitation over the Korean Peninsula by reducing the systematic underestimation of precipitation over the Korean Peninsula.

A Study on the Feasibility analysis model for Housing Environment Improvement Project of Depressed region - Focused on the project by the public sector - (낙후지역 주거환경개선사업 타당성분석 평가모델 연구 - 공공(公共) 시행사업을 중심으로 -)

  • Choi, Jung-Min;Choi, Chan-Hwan
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.14 no.1
    • /
    • pp.83-90
    • /
    • 2012
  • The purpose of this study was to set and analyze the standard model for prioritizing and deciding to take part in housing environment improvement project in the perspective of the public sector. The results of this study were as follows. The location competitiveness, potential demand, marketability and competitive price, etc were selected by assessment indicators. And Various indicators, including of the size of the area, public transportation, accessibility, convenience of living and the influx of the population, were used by weights indexes. The profit of local residents and the public promoter, variability of earnings, sensitivity analysis and the ratio of money in reserve, etc were also established as detailed indexes for the profitability and business risk analysis. To analyze the cash flow of the project process and review the necessary capital in advance, the payback, total working expenses, gearing ratio and sensitivity of a risk, etc were also set as additional detailed indexes. Lastly, considering it is quasi-public projects, the measure to protect tenants, necessity need of redevelopment and local government's will were additionally used by indexes. And Points were distributed on the importance of each index and scored out of 100. It will allow for the public project promoter to decide rationally whether to come in on the project. The public project promoter like the Korea Land and Housing Corporation will be able to make use of various indexes are based on this study to make decision whether joining the housing environment improvement project in depressed region.

Calibration and Verification of Detailed Prototypical Apartment Building Energy Models for Estimation of Green Remodeling Feasibility (그린리모델링 효과평가를 위한 표준공동주택 정밀에너지해석모델 보정과 검증)

  • Donghyun Seo
    • Land and Housing Review
    • /
    • v.15 no.2
    • /
    • pp.9-17
    • /
    • 2024
  • The prototypical building energy model is very useful in building energy policies, research, and technology development. A prototypical apartment model for detailed energy analysis was proposed by Seo et al. in 2014, but sufficient verification was not possible due to the lack of reliable measurement data in predicting the model's energy consumption. However, verification is now possible thanks to a recent study that analyzed the Household Energy Panel Survey (HEPS) data that is released annually by the Korea Energy Economics Institute (KEEI) and published apartment complex benchmark data. The data was used to calibrate the prototypical apartment energy model located in the central region and constructed between 1990 and 1999. The calibrated model was used to verify the other apartment building groups with respect to region and year of completion. Meteorological data for five representative cities each in the central and southern regions were used for the simulation. A majority of the 18 groups produced results that satisfied the MBE and cv(RMSE) criteria.

Atmospheric Studies Using a Three-Dimensional Eulerian Model in Kyongin Region (3차원 오일러리안 확산모델을 이용한 경인산단권역의 대기거동 해석)

  • Song, Dong-Woong
    • Journal of Environmental Science International
    • /
    • v.15 no.5
    • /
    • pp.387-396
    • /
    • 2006
  • The numerical modeling and comparison with observations are performed to find out the detailed structure of meteorology and the characteristic of related dispersion phenomena of the non-reactive air pollutant at Kyoungin region, South Korea, where several industrial complex including Siwha, Banwol and Namdong is located. MM5 (Fifth Generation NCAR/Penn State Mesoscale Model), 3-D Land/sea breeze model and 3-D diagnostic meteorological model have been utilized for the meteorological simulation for September, 2002 with each different spatial resolution, while 3-D Eulerian air dispersion model for the air quality study. We can see the simulated wind field shows the very local circulation quitely well compared with in-site observations in shoreline area with complex terrains, at which the circulation of Land/sea breeze has developed and merged with the mountain and valley breeze eventually. Also it is shown in the result of the dispersion model that the diurnal variation and absolute value of daily mean $SO_2$ concentrations have good agreement with observations, even though the instant concentration of $SO_2$ simulated overestimates around 1.5 times rather than that of observation due to neglecting the deposition process and roughly estimated emission rate. This results may indicate that it is important for the air quality study at shoreline region with the complex terrain to implement the high resolution meteorological model which is able to handle with the complicate local circulation.

Evaluation of Slope Stability of Taebaeksan National Park using Detailed Soil Map (정밀토양도를 이용한 태백산국립공원의 사면안정성 평가)

  • Kim, Young-Hwan;Jun, Byong-Hee;Jun, Kye-Won
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.2
    • /
    • pp.65-72
    • /
    • 2019
  • More than 64% of Korea's land is occupied by mountain regions, which have terrain characteristics that make it vulnerable to mountain disasters. The trails of Taebaeksan Mountain National Park-the region considered in this study-are located in the vicinity of steep slopes, and therefore, the region is vulnerable to landslides and debris flow during heavy storms. In this study, a slope stability model, which is a deterministic analysis method, was used to examine the potential occurrence of landslides. According to the soil classification of the detailed soil map, the specific weight of soil, effective cohesion, internal friction angle of soil, effective soil depth, and ground slope were used as the parameters of the model, and slope stability was evaluated based on the DEM of a 1 m grid. The results of the slope stability analysis showed that the more hazardous the area was, the closer the ratio of groundwater/effective soil depth is to 1.0. Further, many of the private houses and commercial facilities in the lower part of the national park were shown to be exposed to danger.

A Study on the Structure of Turbulent non-Premixed Oxy-fuel Flame Using CMC Model-based Simulation (CMC 모델 기반 수치해석을 사용한 순산소 난류확산화염 구조 연구)

  • Kim, Jong-Soo;Sreedhara, S.;Huh, Kang-Yeol;Yang, Won
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.1
    • /
    • pp.31-43
    • /
    • 2008
  • Oxy-fuel flame has a significantly different structure from that of air-fuel flame because of its high temperature. This study is aimed to find out the difference of the oxy-fuel flame structure in order to understand reaction mechanism closely, which is crucial to design real-scale oxy-fuel combustion system. By examining pictures of counterflow flame and LIF images, we found that oxy-fuel flame had two-zone structure: fuel decomposition region and distributed CO oxidation region. In the oxy-fuel flame, OH radical was distributed intensely through the whole flame due to its higher flame temperature than crossover temperature. For showing those features of the oxy-fuel flame, 1 MW scale IFRF oxy-natural gas burner was simulated by conditional moment closure(CMC) model. Calculation results were compared with experimental data, and showed agreements in trend. In the simulated distributions of fuel decomposition/CO oxidation rates, CO oxidation region was also separated from fuel decomposition zone considerably, which showed the two-zone structure in the oxy-fuel flame.

  • PDF

Impact of mixer design to reactants mixing characteristics and gas-phase reactions in the mixing region of a hydrocarbon reformer (개질기 혼합영역 형상에 따른 반응물의 혼합도 및 가스상 반응특성에 대한 수치해석적 연구)

  • Kim, Sunyoung;Bae, Joongmyeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.99.1-99.1
    • /
    • 2011
  • Reactant mixing has a critical role in ensuring reformate quality and an important design objective is to achieve sufficiently complete mixture of reactants. For that purpose it is required to understand the coupled transport-kinetics phenomena in the mixing region. Three-dimensional computational fluid dynamics model was developed and validated in previous works. The mixing characteristics in various alternatives of a prototype mixing chamber were compared, and then a reduced reaction kinetics was applied to two extreme designs for investigating the impact of gas-phase reactions. Both designs did not reach threshold ethylene mole fraction of 0.001, but surprisingly more ethylene was generated in the design having better mixing characteristics. The presentation will deliver the development process of coupled transport and kinetics model briefly and the detailed information about the mixing characteristics and gas-phase reactions in two mixer designs.

  • PDF

Radiative Transfer Schemes for Hydrodynamical Stellar Surfaces

  • Bach, K.;Robinson, F.J.;Kim, Y.C.
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.24.4-25
    • /
    • 2009
  • We have investigated the radiational fields through a hydrodynamical stellar model atmosphere. Stellar convection zone is the extremely turbulent region composed of partly ionized compressible gases in high temperature. Moreover, super-adiabatic layers are the transition region in energy transport from convection to radiation. Therefore, opacities and thermodynamic properties due to interaction of matter and radiational fields vary significantly with depth. In order to describe radiational fields accurately, the Opacity Distribution Function (ODF) and the Accelerated Lambda Iteration (ALI) have been applied to hydrodynamic medium. As the first result of our radiative transfer, we present time-dependant variation of radiational fields and thermodynamic structures. Our non-gray transfer model has been compared with the conventional Eddington Approximation. Detailed information of radiational fields and thermodynamic properties will provide deeper insight of physical processes inside stellar atmospheres.

  • PDF

Economic Impacts of Agricultural Water Shortages in Korea - A Combined Top-down and Bottom-up Model Analysis - (상·하향 통합모형을 활용한 농업 수자원 부족의 경제적 효과 분석)

  • Lee, Seoung-Ho;Kwon, Oh-Sang;Kang, Sung-Won
    • Journal of Korean Society of Rural Planning
    • /
    • v.23 no.4
    • /
    • pp.111-126
    • /
    • 2017
  • This study analyzes the impacts of agricultural water shortages in Korea using a combined top-down and bottom-up model. A multi-region multi-output agricultural sector model with detailed descriptions of production technologies and water and land resource constraints has been combined with a standard CGE model. The impacts of four different water shortage scenarios were simulated. It is shown that an active adaptation of crop choices occurs in even the regions with relatively abundant water resources in order to respond to the change in relative output prices caused by water shortages. We found that although the losses in production values are not quite large despite water shortages due to the price feedbacks, the loss in GDP is substantial. We show that our combined approach has advantages in deriving region and product specific production effects as well as the overall GDP loss effect of water shortages.

Adaptive fluid-structure interaction simulation of large-scale complex liquid containment with two-phase flow

  • Park, Sung-Woo;Cho, Jin-Rae
    • Structural Engineering and Mechanics
    • /
    • v.41 no.4
    • /
    • pp.559-573
    • /
    • 2012
  • An adaptive modeling and simulation technique is introduced for the effective and reliable fluid-structure interaction analysis using MSC/Dytran for large-scale complex pressurized liquid containment. The proposed method is composed of a series of the global rigid sloshing analysis and the locally detailed fluid-structure analysis. The critical time at which the system exhibits the severe liquid sloshing response is sought through the former analysis, while the fluid-structure interaction in the local region of interest at the critical time is analyzed by the latter analysis. Differing from the global coarse model, the local fine model considers not only the complex geometry and flexibility of structure but the effect of internal pressure. The locally detailed FSI problem is solved in terms of multi-material volume fractions and the flow and pressure fields obtained by the global analysis at the critical time are specified as the initial conditions. An in-house program for mapping the global analysis results onto the fine-scale local FSI model is developed. The validity and effectiveness of the proposed method are verified through an illustrative numerical experiment.