• Title/Summary/Keyword: Detailed Chemical Reaction Mechanism

Search Result 45, Processing Time 0.025 seconds

Development of a Detailed Chemical Kinetic Reaction Mechanism of Surrogate Mixtures for Gasoline Fuel (가솔린 연료를 위한 대용혼합물의 상세한 화학반응 메카니즘 개발)

  • Lee, Ki-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.1
    • /
    • pp.46-52
    • /
    • 2009
  • The oxidation of surrogate mixtures for gasoline fuel was studied numerically in perfectly stirred reactor(PSR) to develope the needed detailed reaction mechanism. The reaction mechanism was assembled with the mechanisms for the oxidation of iso-octane or kerosene. It was shown that the reaction model predicted reasonably well the concentration profiles of fuel and major species reported in the literature. As the addition of kerosene into iso-octane as fuel was increased, the concentrations of $C_2H_2$ and benzene became high. Especially benzene known as a carcinogen appeared at a very high concentration in the flue gases.

Skeletal Chemical Mechanisms for a Diesel Fuel Surrogate by the Directed Relation Graph(DRG) (직접 관계 그래프(DRG)를 이용한 디젤 연료의 상세 화학 반응 기구 축소화)

  • Lee, Young-J.;Huh, Kang-Y.
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.2
    • /
    • pp.16-22
    • /
    • 2011
  • It is a challenging task to apply large detailed chemical mechanisms of fuel oxidation in simulation of complex combustion phenomena. There exist a few systematic methodologies to reduce detailed chemical mechanisms to smaller sizes involving less computational load. This research work concerns generation of a skeletal chemical mechanism by a directed relation graph with specified accuracy requirement. Two sequential stages for mechanism reduction are followed in a perfectly stirred reactor(PSR) for high temperature chemistry and to consider the autoignition delay time for low and high temperature chemistry. Reduction was performed for the detailed chemical mechanism of n-heptane consisting of 561 species and 2539 elementary reaction steps. Validation results show acceptable agreement for the autoignition delay time and the PSR calculation in wide parametric ranges of pressure, temperature and equivalence ratio.

The Influence of Strain Rates on the $CH_4/C_2HCl_3/Air$ Counterflow Nonpremixed Flames ($CH_4/C_2HCl_3/Air$ 대향류 비예혼합 화염에서 스트레인율의 영향)

  • Lee, Ki-Yong
    • Journal of the Korean Society of Combustion
    • /
    • v.5 no.1
    • /
    • pp.7-18
    • /
    • 2000
  • Numerical simulations of counterflow non-premixed $CH_4/C_2HCl_3/Air$ flames added 8%(by volume) C2HCl3 on the fuel side are conducted at atmospheric pressure using a detailed chemical reaction mechanism in order to understand the effect of strain rates. A detailed sensitivity analysis is also performed in order to assess the relative influence of each reaction on the flame established at a strain rate of 200s-1. The structure of flames (i.e., temperature, velocity, and concentration of species) established at both a strain rate of 150s-1 and 300s-1 are investigated. As the strain rate increases, the "flame zone" is restricted to a narrower range and the position of maximum temperature is shifted to the fuel side. The concentrations of major species, H2O, CO, H2, HCl, Cl2, and Cl are decreased with increased strain rate. The reaction involving chlorine, CH4 + Cl $\rightarrow$ CH3 + HCl, instead of the reaction, CH4 + H $\rightarrow$ CH3 + H2 influences the consumption of methane. C2HCl3 + OH $\rightarrow$ CHCl2 + CHOCl and HCl + OH $\rightarrow$ H2O + Cl, are major reactions, through which OH radicals are consumed.

  • PDF

A Study on the Detailed Diesel Surrogate Chemical Mechanism for Analysis of HCCI Engine (HCCI 엔진 해석을 위한 Diesel Surrogate 반응 기구에 관한 연구)

  • Lee, Won-Jun;Lee, Seung-Ro;Lee, Chang-Eon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.4
    • /
    • pp.64-71
    • /
    • 2011
  • Homogeneous charge compression ignition (HCCI) was the best concept able to provide low NOx and PM in diesel engine emissions. This new alternative combustion process was mainly controlled by chemical kinetics in comparison with the conventional combustion in internal combustion engine. In this paper, detailed kinetic reaction mechanisms of diesel surrogate was investigated to understand the diesel HCCI engine combustion. It was tested two existing mechanisms and two new mechanisms for the comparison of experimental result. The best mechanism for diesel surrogate was suggested through this comparison.

Generation of a skeletal mechanism of coal combustion based on the chemical pathway analysis

  • Ahn, Seongyool;Watanabe, Hiroaki;Shoji, Tetsuya;Umemoto, Satoshi;Tnno, Kenji
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.5-7
    • /
    • 2014
  • A skeletal mechanism of coal combustion was derived from a detailed coal combustion kinetic mechanism through an importance analysis of chemical pathways. The reduction process consists of roughly two parts. The first process is performed based on a connectivity analysis between species. In this process, DRGEPSA is chosen for reduction process. Strongly connected species and related reactions from the important species set as start species by the operator are sorted into the reduced mechanism. About 70% of species and reactions can be removed with a limited accuracy loss. Subsequently the second reduction process, CSP, is performed. This method focuses on an importance of each reaction and can reduce a volume of mechanism appropriately. Through these analyses, a skeletal mechanism is generated that is including 65 species and 150 reactions. The generated skeletal mechanism is verified through a comparison with the detailed mechanism in the homogeneous reactor model of CHEMKIN-PRO under wide range of conditions. The generated mechanism can give an advantage in the analysis of coal combustion characteristics in detail in large scale simulations such as LES and DNS.

  • PDF

Partial Preconditioning Approach for the Solution of Detailed Kinetics Problems Based on Sensitivity Analysis (효율적인 상세 반응 기구 해석을 위한 민감도 기반의 부분 음해법)

  • Kang, K.H.;Moon, S.Y.;Noh, J.H.;Won, S.H.;Choi, J.Y.
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.1
    • /
    • pp.17-22
    • /
    • 2008
  • A partly implicit/quasi-explicit method is introduced for the solution of detailed chemical kinetics with stiff source terms based on the standard fourth-order Runge-Kutta scheme. Present method solves implicitly only the stiff reaction rate equations, whereas the others explicitly. The stiff equations are selected based on the survey of the chemical Jaconian matrix and its Eigenvalues. As an application of the present method constant pressure combustion was analyzed by a detailed mechanism of hydrogen-air combustion with NOx chemistry. The sensitivity analysis reveals that only the 4 species in NOx chemistry has strong stiffness and should be solved implicitly among the 13 species. The implicit solution of the 4 species successfully predicts the entire process with same accuracy and efficiency at half the price.

  • PDF

Theoretical Understanding of Fenton Chemistry (펜톤 화학 반응의 이론적 이해)

  • Lim, Haegyu;Namkung, Kyu Cheol;Yoon, Jeyong
    • Applied Chemistry for Engineering
    • /
    • v.16 no.1
    • /
    • pp.9-14
    • /
    • 2005
  • The Fenton reaction ($Fe^{2+}+H_2O_2$) has attracted considerable attention because of promising applicability as an environmental technology. While the various novel environmental technologies using Fenton reaction have been actively developed, the detailed mechanism of Fenton reaction is not clearly defined yet. As the major oxidizing chemical species, hydroxyl radical and high valent iron complex have been suggested to be produced in Fenton reaction in different mechamisms respectively. We critically summarized the basic issues regarding the microscopic mechanism of Fenton reaction.

Modeling of Laminar Burning Velocities for Hydrocarbon and 7ethanol Fuels by Using Detailed Chemical Reaction Mechanisms (상세화학반응기구를 이용한 탄화 수소 및 메탄을 층류 화염 속도 모델링)

  • Bae, Sang-Su;Min, Gyeong-Deok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.10
    • /
    • pp.1303-1310
    • /
    • 2001
  • In order to be applicable to the combustion modelling of stratified charged combustion like that of - lean burn and GDI engine, the correlations of laminar burring velocities fur several hydrocarbon fuels and methanol are needed over a wide range of equivalence ratio, pressure and temperature. In this study, these correlations are modeled in the 1311owing form based on the experimental and Muller\`s modeling results for several fuels, where $\alpha$, ξ, and ξ are functions of pressure and temperature, $S_{L}$ =$\alpha$ exp[-ξ($\Phi$-$\Phi$$_{m}$)$^{2}$ -exp {-ζ($\Phi$-$\Phi$$_{m}$)}-ζ($\Phi$-$\Phi$$_{m}$)]. By using the results calculated by PREMIX code with Sloane\`s detailed chemical reaction mechanism for propane, it is verified that the coefficients of the abode modeling can be determined by considering laminar burning velocity data only in a range of equivalence ratio less than $\Phi$$_{m}$. Therefore, Muller\`s modeling results can be adopted leer modeling of the pressure and temperature dependency. Compared with the results of the existing Keck'and Gulder's models, those of the present one showed the good agreement of the recent experimental data, especially in the range of lean and rich sides.s.des.s.

Theoretical Insight into the Mechanism of an Efficient ʟ-Proline-catalyzed Transamidation of Acetamide with Benzylamine

  • Wu, Weirong
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2673-2678
    • /
    • 2014
  • The detailed mechanisms of the efficient $\small{L}$-proline and pyrrolidine catalyzed transamidation of acetamide with benzylamine have been investigated using density functional theory (DFT) calculations. Our calculated results show: (1) the mechanisms of two catalytic cycle reactions are similar. However, the rate-determining steps of their reactions are different for the whole catalytic process. One is the intramolecular nucleophilic addition reaction of 1-COM, the other is hydrolysis reaction of 2-C. (2) COOH group of $\small{L}$-proline is essential for efficient transamidation. The computational results are in good agreement with the experiment finding and mechanism resported by Rao et al. for $\small{L}$-proline-catalyzed synthesis of amidesin good to excellent yields.

A Crossed Beam Study of Atom-Radical Reaction Dynamics (원자-라디칼 반응 동력학의 교차 빔 연구)

  • Ju Seon-Gyu;Gwon Lee-Gyeong;Lee Ho-Jae;Choe Jong-Ho
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.05b
    • /
    • pp.163-164
    • /
    • 2003
  • Reaction dynamics plays an essential role in understanding the microscopic mechanism of elementary chemical processes at the molecular level. Detailed studies of the reactions of atomic species such as hydrogen and second-row atoms with small closed-shell molecules have provided important insights into hydrocarbon synthesis, combustion, interstellar space and atmospheric chemistry. Despite its mechanistic significance, however, the investigations of atom-radical reaction dynamics are quite scarce in comparison to the extensive studies of atom-molecule reactions. (omitted)

  • PDF