Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.9.2673

Theoretical Insight into the Mechanism of an Efficient ʟ-Proline-catalyzed Transamidation of Acetamide with Benzylamine  

Wu, Weirong (Key Laboratory of Inorganic Chemistry in Universities of Shandong, Department of Chemistry and Chemical Engineering, Jining University)
Publication Information
Abstract
The detailed mechanisms of the efficient $\small{L}$-proline and pyrrolidine catalyzed transamidation of acetamide with benzylamine have been investigated using density functional theory (DFT) calculations. Our calculated results show: (1) the mechanisms of two catalytic cycle reactions are similar. However, the rate-determining steps of their reactions are different for the whole catalytic process. One is the intramolecular nucleophilic addition reaction of 1-COM, the other is hydrolysis reaction of 2-C. (2) COOH group of $\small{L}$-proline is essential for efficient transamidation. The computational results are in good agreement with the experiment finding and mechanism resported by Rao et al. for $\small{L}$-proline-catalyzed synthesis of amidesin good to excellent yields.
Keywords
Transamidation; $\small{L}$-Proline-catalydst; Pyrrolidine-catalydst; Acetamide; Benzylamine;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133.   DOI
2 Oh, D.; Choe, J. I. Bull. Korean Chem. Soc. 2007, 28, 596.   DOI
3 Rassolov, V. A. M.; Ratner, A. J.; Pople, A.; Redfern, P. C.; Curtiss, L. A. J. Comput. Chem. 2001, 22, 976.   DOI
4 Fang, R.; Ke, Z. F.; Shen, Y.; Zhao, C. Y.; Phillips, D. L. J. Org. Chem. 2007, 72, 5139.   DOI
5 Ando, K. J. Org. Chem. 2010, 75, 8516.   DOI
6 Gonzalez, C.; Schlegel, H. B. J. Chem. Phys. 1989, 90, 2154.   DOI
7 Park, S. J.; Cho, C. G.; Lee, K. I. Bull. Korean Chem. Soc. 2004, 25, 349.   DOI   ScienceOn
8 Zhang, M.; Imm, S.; Bahn, S.; Neumann, H.; Beller, M. Angew. Chem. 2011, 50, 11197.   DOI   ScienceOn
9 Ghosh, S. C.; Ngiam, J. S. Y.; Seayad, A. M.; Tuan, D. T.; Chai, C. L.; Chen, A. J. Org. Chem. 2012, 77, 8007.   DOI   ScienceOn
10 Charville, H.; Jackson, D.; Hodges, G.; Whiting, A. Chem. Commun. 2010, 1813.
11 Hartwig, J. F. Acc. Chem. Res. 2008, 41, 1534.   DOI   ScienceOn
12 Allen, C. L.; Atkinson, B. N.; Williams, J. M. Angew. Chem. 2012, 124, 1412.   DOI   ScienceOn
13 Zhang, M.; Imm, S.; Bahn, S.; Neubert, L.; Neumann, H.; Beller, M. Angew. Chem. 2012, 124, 3971.   DOI   ScienceOn
14 Shimizu, Y.; Morimoto, H.; Zhang, M.; Ohshima, T. Angew. Chem., Int. Ed. 2012, 51, 8564.   DOI   ScienceOn
15 Allen, C. L.; Atkinson, B. N.; Williams, J. M. Angew. Chem., Int. Ed. 2012, 51, 1383.   DOI   ScienceOn
16 Nguyen, T. B.; Sorres, J.; Tran, M. Q.; Ermolenko, L.; Almourabit, A. Org. Lett. 2012, 14, 3202.   DOI   ScienceOn
17 Vanjari, R.; Allam, B. K.; Singh, K. N. RSC. Adv. 2013, 3, 1691.   DOI
18 Kappe, C. O.; Stadler, A.; Dallinger, D. Weinheim; Germany: Wiley-VCH Verlag GmbH & Co. KgaA, 2012.
19 Rao, S. N.; Mohan, D. C.; Adimurthy, S. Org. Lett. 2013, 15, 1496.   DOI   ScienceOn
20 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B., et al., GAUSSIAN 03 (Revision E01); Gaussian Inc.: Pittsburgh PA, 2004.
21 Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, B864.   DOI
22 Atkinson, B. N.; Chhatwal, A. R.; Lomax, H. V.; Walton, J. W.; Williams, J. M. Chem. Commun. 2012, 11626.
23 Wang, G. W.; Yuan, T. T.; Li, D. D. Angew. Chem., Int. Ed. 2011, 50, 1380.   DOI   ScienceOn
24 Tamura, M.; Tonomura, T.; Shimizu, K.-I.; Satsuma, A. Green Chem. 2012, 14, 717.   DOI
25 Curtis, L. A.; Raghavachari, K.; Pople, J. A. J. Chem. Phys. 1993, 98, 1293.   DOI