• 제목/요약/키워드: Detached-eddy simulation

검색결과 55건 처리시간 0.029초

Aeroacoustic Investigation of a Cavity with and without Doors by Delayed Detached Eddy Simulation

  • Liu, Yu;Tong, Mingbo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권1호
    • /
    • pp.19-27
    • /
    • 2015
  • In the present study, an effort was made to numerically investigate rectangular cavity aeroacoustics with and without doors. The simulation was performed on an open cavity with an aspect ratio of 5:1:1 at Mach 0.85 using the delayed detached eddy simulation (DDES) approach based on the Spalart-Allmaras model. Two cavity configurations, a clean cavity and a cavity with doors, were modeled. The results obtained from the clean cavity were compared with the experimental sound pressure levels (SPL) and the root mean square for the pressures applied. Furthermore, comparisons of frequencies were made using a modified semi-empirical Rossiter formula. The simulation using DDES precisely predicted the pressure fluctuation and the results matched the experiment quite well. The SPLs at the rear of the cavity were much higher than those in the front due to the instability of the shear layer impinging on the rear wall. Comparisons of DDES for the clean cavity and the doors-on cavity revealed that the SPLs inside the cavity as well as the magnitude of tones are amplified by the side doors. The main focus of this investigation was to obtain a better understanding of the open cavity acoustic resonance phenomenon and investigate the effects of cavity doors on the SPL.

DES법을 이용한 SUBOFF 잠수함 모델 주위 유동 수치해석 연구 (Numerical Simulation of the Flow Around the SUBOFF Submarine Model Using a DES Method)

  • 서성부;박일룡
    • 대한조선학회논문집
    • /
    • 제58권2호
    • /
    • pp.73-83
    • /
    • 2021
  • In this study, the numerical investigation of the flow around the SUBOFF submarine model is performed by using the Detached Eddy Simulation (DES) method which is developed based on the SST k-ω turbulence model. At the DES analysis level, complex vortical flows around the submarine model are caused mainly by the vortices due to the appendages and their interactions with the flows from the hull boundary layer and other appendages. The complexity and scale of the vortical flow obtained from the numerical simulations are highly dependent on the grid. The computed local flow properties of the submarine model are compared with the available experimental data showing a good agreement. The DES analysis more reasonably estimates the physical phenomena inherent in the experimental result in a low radius of the propeller plane where vortical flows smaller than the RANS scale are dominant.

DES를 이용한 초음속 유동내 수직 연료분사 유동의 비정상 3차원 해석 (UNSTEADY THREE-DIMENSIONAL ANALYSIS OF TRANSVERSE FUEL INJECTION INTO A SUPERSONIC CROSSFLOW USING DETACHED EDDY SIMULATION)

  • 원수희;문성영;정인석;최정열
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 학술대회
    • /
    • pp.97-103
    • /
    • 2008
  • Unsteady three-dimensional flowfields generated by transverse fuel injection into a supersonic mainstream are simulated with a DES turbulence model. Comparisons are made with experimental results in term of the temporal eddy position and eddy formation frequency. The vorticity field around the jet exit is also analyzed to understand the formation mechanism of the jet vortical structures. Results indicate that the DES model correctly predicts the convection characteristics of the large scale eddies. However, it is also observed that the numerical results slightly overpredict the eddy formation frequency. The jet vortical structures are developed from the competing vortices in the recirculation region of upstream boundary.

  • PDF

DES를 이용한 초음속 유동내 수직 연료분사 유동의 비정상 3차원 해석 (UNSTEADY THREE-DIMENSIONAL ANALYSIS OF TRANSVERSE FUEL INJECTION INTO A SUPERSONIC CROSSFLOW USING DETACHED EDDY SIMULATION)

  • 원수희;문성영;정인석;최정열
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년 추계학술대회논문집
    • /
    • pp.97-103
    • /
    • 2008
  • Unsteady three-dimensional flowfields generated by transverse fuel injection into a supersonic mainstream are simulated with a DES turbulence model. Comparisons are made with experimental results in term of the temporal eddy position and eddy formation frequency. The vorticity field around the jet exit is also analyzed to understand the formation mechanism of the jet vortical structures. Results indicate that the DES model correctly predicts the convection characteristics of the large scale eddies. However, it is also observed that the numerical results slightly overpredict the eddy formation frequency. The jet vortical structures are developed from the competing vortices in the recirculation region of upstream boundary.

  • PDF

후향계단 DDES 해석의 길이척도 영향 분석 (EFFECT OF LENGTH-SCALE IN DDES FOR BACKWARD-FACING STEP FLOW)

  • 이충연;사정환;박수형;이은석;이진익;이광섭
    • 한국전산유체공학회지
    • /
    • 제17권4호
    • /
    • pp.24-31
    • /
    • 2012
  • Effects of the subgrid length-scale in the Delayed-Detached Eddy Simulation(DDES) are investigated based on the Spalart-Allmaras(S-A) and the k-$\omega$ Shear Stress Transport(SST) turbulence models. Driver & Seegmiller's experimental results are used to validate numerical results. Grid convergence with grid resolution and subgrid length-scale is investigated. The simulation results show that the volume method for the subgrid length-scale is more resistant to unfavorable effects of the grid size in the periodic direction than the maximum method. Using a sufficient grid resolution and an appropriate subgrid length-scale, both S-A based DDES and SST based DDES methods can provide a good correlation with the experimental data.

고 받음각 ONERA 70도 삼각날개 와류 유동의 압력 섭동 분석 (NUMERICAL ANALYSIS OF PRESSURE PERTURBATION OF DELTA WING VORTEX FLOW AT A HIGH ANGLE OF ATTACK)

  • 손미소;사정환;박수형;변영환
    • 한국전산유체공학회지
    • /
    • 제20권2호
    • /
    • pp.73-80
    • /
    • 2015
  • Delayed Detached-Eddy Simulation was conducted to investigate surface pressure coefficient distribution and surface pressure fluctuation over an ONERA 70-degree delta wing at a high angle of attack. Time-averaged surface pressure distribution is directly affected by the primary vortices, whereas the pressure fluctuation is influenced by the unsteady fluctuating boundary layer over the surface. And pressure coefficient, velocity, pressure fluctuation, and turbulent kinetic energy were analyzed along the vortex core in order to investigate the process of vortex breakdown. Consequently, strong pressure fluctuations were found where the vortex breakdown was occurred at x~620 mm. The turbulent kinetic energy abruptly increased and followed after the vortex breakdown.

A Comparative Study of Numerical Methods on Aerodynamic Characteristics of a Compressor Rotor at Near-stall Condition

  • Kim, Donghyun;Kim, Kuisoon;Choi, Jeongyeol;Son, Changmin
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권2호
    • /
    • pp.157-164
    • /
    • 2015
  • The present work performs three-dimensional flow calculations based on Reynolds Averaged Navier-Stokes (RANS) and Delayed Detached Eddy Simulation (DDES) to investigate the flow field of a transonic rotor (NASA Rotor 37) at near-stall condition. It is found that the DES approach is likely to predict well the complex flow characteristics such as secondary vortex or turbulent flow phenomenon than RANS approach, which is useful to describe the flow mechanism of a transonic compressor. Especially, the DES results show improvement of predicting the flow field in the wake region and the model captures reasonably well separated regions compared to the RANS model. Besides, it is discovered that the three-dimensional vortical flows after the vortex breakdown from the rotor tip region are widely distributed and its vortex structures are clearly present. Near the rotor leading edge, a part of the tip leakage flows in DES solution spill over into next passage of the blade owing to the separation vortex flow and the backflow is clearly seen around the trailing edge of rotor tip. Furthermore, the DES solution shows strong turbulent eddies especially in the rotor hub, rotor tip section and the downstream of rotor trailing edge compared to the RANS solution.

Improved Delayed DES 해석을 통한 돔 형상의 풍압 계수 및 풍압 스펙트럼 산정 (Wind Pressure Coefficients and Spectrum Estimation of Dome by Improved Delayed Detached Eddy Simulation)

  • 박범희;전두진;한상을
    • 한국공간구조학회논문집
    • /
    • 제19권4호
    • /
    • pp.95-102
    • /
    • 2019
  • In this study, the reliability of the analysis is evaluated by comparing the average wind pressure coefficient, RMS wind pressure coefficient and wind pressure spectrum with same condition of wind tunnel test which are calculated in the high-Reynolds number range of 1.2×106, 2.0×106 each for the typical curved shape dome structure. And it is examined by the reliability of analysis through Improved delayed detached Eddy Simulation(IDDES), which is one of the hybrid RANS/LES techniques that can analyze the realistic calculation range of high Reynolds number. As a result of the study, it was found that IDDES can be predicted very similar to the wind tunnel test. The distribution pattern of the wind pressure coefficient and wind pressure spectrum showed a similar compared with wind tunnel test.

초음속 기저유동의 우수한 예측을 위한 DES 모델상수의 동적 보정 (Dynamic Correction of DES Model Constant for the Advanced Prediction of Supersonic Base Flow)

  • 신재렬;최정열
    • 한국항공우주학회지
    • /
    • 제38권2호
    • /
    • pp.99-110
    • /
    • 2010
  • 강한 압축성을 갖는 유동의 DES 해석에서, 일반적인 경험상수 $C_{DES}$ 값 0.65를 사용할 경우 경계층 내에서 인위적으로 LES 모드로 수행된다. 본 연구에서는 S-A DES 모델에서 RANS 모드 보호를 위하여 사용되는 난류 길이와 벽거리 비의 분포 함수를 이용한 $C_{DES}$의 동적 결정 방법을 제시하였다. 동적 $C_{DES}$ 결정식을 초음속 기저 유동장에 적용한 결과 다른 모델 상수를 사용한 기존의 연구 결과에 비하여 우수한 예측을 보여주었다.

DES를 이용한 초음속 유동내 수직 연료분사 유동의 비정상 3차원 해석 Part II : 반응 유동장 (Unsteady Three-Dimensional Analysis of Transverse Fuel Injection into a Supersonic Crossflow using Detached Eddy Simulation Part II : Reacting Flowfield)

  • 원수희;정인석;최정열
    • 한국항공우주학회지
    • /
    • 제37권9호
    • /
    • pp.879-888
    • /
    • 2009
  • 초음속 주 유동내 수소의 수직분사에 의한 비정상 반응 유동장에 대한 3차원 수치해석이 DES 난류 모델과 상세 화학반응 모델을 이용하여 수행되었다. 난류 반응 유동의 물리적 현상을 이해하기 위하여 해석 및 실험 결과를 비교하였다. 계산에 의해 구해진 OH 분포는 실험의 OH-PLIF 결과를 잘 모사하고 있다. 반면, 점화 지연 시간은 계산과 실험 사이에 차이를 보이고 있으며, 이는 실험적 계측의 한계에 기인하는 것으로 생각된다. RANS 및 DES 계산 결과의 비교로부터 간헐 현상을 확인하였으며, 유선을 따른 온도 분포 및 중첩된 OH 질량 분율을 통해 시 공간적 간헐 현상을 정량적으로 측정하였다.