• Title/Summary/Keyword: Destabilization

Search Result 108, Processing Time 0.072 seconds

A STATISTICAL STUDY OF STREAMER-ASSOCIATED CORONAL MASS EJECTIONS

  • Moon, Y.J.;Kim, Jin-Sug;Kim, Y.H.;Cho, K.S.;Bong, Su-Chan;Park, Y.D.
    • Journal of The Korean Astronomical Society
    • /
    • v.39 no.4
    • /
    • pp.139-145
    • /
    • 2006
  • We have made a comprehensive statistical study on the coronal mass ejections(CMEs) associated with helmet streamers. A total number of 3810 CMEs observed by SOHO/LASCO coronagraph from 1996 to 2000 have been visually inspected. By comparing their LASCO images and running difference images, we picked out streamer-associated CMEs, which are classified into two sub-groups: Class-A events whose morphological shape seen in the LASCO running difference image is quite similar to that of the pre-existing streamer, and Class-B events whose ejections occurred in a part of the streamer. The former type of CME may be caused by the destabilization of the helmet streamer and the latter type of CME may be related to the eruption of a filament underlying the helmet streamer or narrow CMEs such as streamer puffs. We have examined the distributions of CME speed and acceleration for both classes as well as the correlation between their speed and acceleration. The major results from these investigations are as follows. First, about a quarter of all CMEs are streamer-associated CMEs. Second, their mean speed is 413 km $s^{-1}$ for Class-A events and 371 km $s^{-1}$ for Class-B events. And the fraction of the streamer-associated CMEs decreases with speed. Third, the speed-acceleration diagrams show that there are no correlations between two quantities for both classes and the accelerations are nearly symmetric with respect to zero acceleration line. Fourth, their mean angular width are about $60^{\circ}$, which is similar to that of normal CMEs. Fifth, the fraction of streamer-associated CMEs during the solar minimum is a little larger than that during the solar maximum. Our results show that the kinematic characteristics of streamer-associated CMEs, especially Class-A events, are quite similar to those of quiescent filament-associated CMEs.

The α-Effect and Mechanism of Reactions of Y-Substituted Phenyl Benzenesulfonates with Hydrogen Peroxide Ion

  • Im, Li-Ra;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.10
    • /
    • pp.2393-2397
    • /
    • 2009
  • Second-order rate constants ($k_{HOO}$‒) have been measured spectrophotometrically for nucleophilic substitution reactions of Y-substituted phenyl benzenesulfonates (1a-g) with $HOO^-$ ion in $H_2O$ at $25.0\;{\pm}\;0.1\;{^{\circ}C}$. The Br$\phi$nsted-type plot is linear with ${\beta}_{lg}$ = ‒0.73. The Hammett plot correlated with with ${\sigma}^-$ constants results in much better linearity than ${\sigma}^o$ constants, indicating that expulsion of the leaving group occurs in the rate-determining step (RDS) either in a stepwise mechanism or in a concerted pathway. However, a stepwise mechanism in which departure of the leaving group occurs in the RDS has been excluded since $HOO^-$ ion is more basic and a poorer leaving group than the leaving Y-substituted phenoxide ions. Thus, the reactions of 1a-g with $HOO^-$ ion have been concluded to proceed through a concerted mechanism. The $\alpha$-nucleophile $HOO^-$ ion is more reactive than its reference nucleophile $OH^-$ ion although the former is ca. 4 p$K_a$ units less basic than the latter (i.e., the $\alpha$-effect). TS stabilization through intramolecular H-bonding interaction has been suggested to be irresponsible for the $\alpha$-effect shown by $HOO^-$ ion, since the magnitude of the $\alpha$-effect is independent of the electronic nature of substituent Y in the leaving group. GS destabilization through desolvation of $HOO^-$ ion has been concluded to be responsible for the $\alpha$-effect found in the this study.

Theoretical Evaluation of the Electrophilic Catalyses in Successive Enolization and Reketonization Reactions by Δ5-3-Ketosteroid Isomerase

  • Park, Hwang-Seo;Seh, Jung-Hun;Lee, Sang-Youb
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.6
    • /
    • pp.837-845
    • /
    • 2002
  • Based on ab initio calculations at the MP2(FULL)/6-31+G**//RHF/6-31G** level, we compare the energetic and mechanistic features of a model reaction for catalytic action of Δ?-3-ketosteroid isomerase (KSL,E.C.5.3,3.1) with those of a corresponding nonenzymatic reaction in aqueous solution. The results show that the two catalytic acid residues,Tyr14 and Asp99, can lower the free energy of activation by 8.6kcal/mol, which is in good agreement with the experimentally predicted~9 kcal/mol,contribution of electrophilic catalyses to the whole enzymatic rate enhancement. The dienolate intermediate formed by proton transfer from the substrate carbon acid to the catalytic base residue (Asp38) ins predicted to be stabilized by 12.0 kcal/mol in the enzymatic reaction, making its formation thermodynamically favorable. It has been argued that enzymes catalyzing the reactions of carbon acids should resolve the thermodynamic problem of stabilizing the enolate intermediate as well as the kinetic porblem of lowering the free energy of activation for porton abstraction. We find that KSI can successfully overcome the thermodynamic difficulty ingerent in the nonenzymatic reaction through the electrophilic catalyses of the two acid residues. Owing to the stabilization of dienolate intermediate, the reketonization step could influence the overall reaction rate more significantly in the KSI- catalyzed reaction than in the nonenzymatic reaction, further supporting the previous experimental findings. However, the electrophilic catalyses alone cannot account for the whole catalygic capability (12-13 kcal/mol), confiming the earlier experimental implications for the invement of additional catalytic components. The present computational study indicates clearly how catalytic residues of KSI resolve the fundamental problems associated with the entropic penalty for forming the rate-limiting transition state and its destabilization in the bulk solvation environment.

Kinetic Study on Nucleophilic Displacement Reactions of 2-Chloro-4-Nitrophenyl X-Substituted-Benzoates with Primary Amines: Reaction Mechanism and Origin of the α-Effect

  • Um, Tae-Il;Kim, Min-Young;Kim, Tae-Eun;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.436-440
    • /
    • 2014
  • The ${\alpha}$-Effect; Ground state; Transition state; Intramolecular H-bonding; Yukawa-Tsuno plot; Second-order rate constants for aminolysis of 2-chloro-4-nitrophenyl X-substituted-benzoates (1a-h) have been measured spectrophotometrically in 80 mol % $H_2O/20$ mol % DMSO at $25.0^{\circ}C$. The Br${\emptyset}$nsted-type plot for the reactions of 2-chloro-4-nitrophenyl benzoate (1d) with a series of primary amines curves downward, which has been taken as evidence for a stepwise mechanism with a change in rate-determining step (RDS). The Hammett plots for the reactions of 1a-h with hydrazine and glycylglycine are nonlinear while the Yukawa-Tsuno plots exhibit excellent linearity with ${\rho}_X=1.22-1.35$ and ${\gamma}= 0.57-0.59$, indicating that the nonlinear Hammett plots are not due to a change in RDS but are caused by stabilization of substrates possessing an electron-donating group (EDG) through resonance interactions between the EDG and C=O bond of the substrates. The ${\alpha}$-effect exhibited by hydrazine increases as the substituent X changes from a strong EDG to a strong electron-withdrawing group (EWG). It has been concluded that destabilization of hydrazine through the electronic repulsion between the adjacent nonbonding electrons is not solely responsible for the substituent dependent ${\alpha}$-effect but stabilization of the transition state is also a plausible origin of the ${\alpha}$-effect.

Role of the Salt Bridge Between Arg176 and Glu126 in the Thermal Stability of the Bacillus amyloliquefaciens ${\alpha}$-Amylase (BAA)

  • Zonouzi, Roseata;Khajeh, Khosro;Monajjemi, Majid;Ghaemi, Naser
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.1
    • /
    • pp.7-14
    • /
    • 2013
  • In the Bacillus amyloliquefaciens ${\alpha}$-amylase (BAA), the loop (residues 176-185; region I) that is the part of the calcium-binding site (CaI, II) has two more amino acid residues than the ${\alpha}$-amylase from Bacillus licheniformis (BLA). Arg176 in this region makes an ionic interaction with Glu126 from region II (residues 118-130), but this interaction is lost in BLA owing to substitution of R176Q and E126V. The goal of the present work was to quantitatively estimate the effect of ionic interaction on the overall stability of the enzyme. To clarify the functional and structural significance of the corresponding salt bridge, Glu126 was deleted (${\Delta}$E126) and converted to Val (E126V), Asp (E126D), and Lys (E126K) by site-directed mutagenesis. Kinetic constants, thermodynamic parameters, and structural changes were examined for the wild-type and mutated forms using UV-visible, atomic absoption, and fluorescence emission spectroscopy. Wild-type exhibited higher $k_{cat}$ and $K_m$ but lower catalytic efficiency than the mutant enzymes. A decreased thermostability and an increased flexibility were also found in all of the mutant enzymes when compared with the wild-type. Additionally, the calcium content of the wild-type was more than ${\Delta}E126$. Thus, it may be suggested that ionic interaction could decrease the mobility of the discussed region, prevent the diffusion of cations, and improve the thermostability of the whole enzyme. Based on these observations, the contribution of loop destabilization may be compensated by the formation of a salt bridge that has been used as an evolutionary mechanism or structural adaptation by the mesophilic enzyme.

Effect of PRX-1 Downregulation in the Type 1 Diabetes Microenvironment

  • Yoo, Jong-Sun;Lee, Yun-Jung;Hyung, Kyeong Eun;Yoon, Joo Won;Lee, Ik Hee;Park, So-Young;Hwang, Kwang Woo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.6
    • /
    • pp.463-468
    • /
    • 2012
  • Type 1 diabetes (T1D) is caused by dysregulation of the immune system in the pancreatic islets, which eventually leads to insulin-producing pancreatic ${\beta}$-cell death and destabilization of glucose homeostasis. One of the major characteristics of T1D pathogenesis is the production of inflammatory mediators by macrophages that result in destruction or damage of pancreatic ${\beta}$-cells. In this study the inflammatory microenvironment of T1D was simulated with RAW264.7 cells and MIN6 cells, acting as macrophages and pancreatic ${\beta}$-cells respectably. In this setting, peroxiredoxin-1, an anti-oxidant enzyme was knocked down to observe its functions in the pathogenesis of T1D. RAW264.7 cells were primed with lipopolysaccharide and co-cultured with MIN6 cells while PRX-1 was knocked down in one or both cell types. Our results suggest that hindrance of PRX-1 activity or the deficiency of this enzyme in inflammatory conditions negatively affects pancreatic ${\beta}$-cell survival. The observed decrease in viability of MIN6 cells seems to be caused by nitric oxide production. Additionally, it seems that PRX-1 affects previously reported protective activity of IL-6 in pancreatic ${\beta}$ cells as well. These results signify new, undiscovered roles for PRX-1 in inflammatory conditions and may contribute toward our understanding of autoimmunity.

Suppression of HIF-1α by Valproic Acid Sustains Self-Renewal of Mouse Embryonic Stem Cells under Hypoxia In Vitro

  • Lee, Hyo-Jong;Kim, Kyu-Won
    • Biomolecules & Therapeutics
    • /
    • v.20 no.3
    • /
    • pp.280-285
    • /
    • 2012
  • The developing embryo naturally experiences relatively low oxygen conditions in vivo. Under in vitro hypoxia, mouse embryonic stem cells (mESCs) lose their self-renewal activity and display an early differentiated morphology mediated by the hypoxia-inducible factor-$1{\alpha}$ (HIF-$1{\alpha}$). Previously, we demonstrated that histone deacetylase (HDAC) is activated by hypoxia and increases the protein stability and transcriptional activity of HIF-$1{\alpha}$ in many human cancer cells. Furthermore HDAC1 and 3 mediate the differentiation of mECSs and hematopoietic stem cells. However, the role of HDACs and their inhibitors in hypoxia-induced early differentiation of mESCs remains largely unknown. Here, we examined the effects of several histone deacetylase inhibitors (HDACIs) on the self-renewal properties of mESCs under hypoxia. Inhibition of HDAC under hypoxia effectively decreased the HIF-$1{\alpha}$ protein levels and substantially improved the expression of the LIF-specific receptor (LIFR) and phosphorylated-STAT3 in mESCs. In particular, valproic acid (VPA), a pan HDACI, showed dramatic changes in HIF-$1{\alpha}$ protein levels and LIFR protein expression levels compared to other HDACIs, including sodium butyrate (SB), trichostatin A (TSA), and apicidin (AP). Importantly, our RT-PCR data and alkaline phosphatase assays indicate that VPA helps to maintain the self-renewal activity of mESCs under hypoxia. Taken together, these results suggest that VPA may block the early differentiation of mESCs under hypoxia via the destabilization of HIF-$1{\alpha}$.

Chemokine Lkn-1/CCL15 enhances matrix metalloproteinase-9 release from human macrophages and macrophage-derived foam cells

  • Kwon, Sang-Hee;Ju, Seong-A;Kang, Ji-Hye;Kim, Chu-Sook;Yoo, Hyeon-Mi;Yu, Ri-Na
    • Nutrition Research and Practice
    • /
    • v.2 no.2
    • /
    • pp.134-137
    • /
    • 2008
  • Atherosclerosis is characterized by a chronic inflammatory disease, and chemokines play an important role in both initiation and progression of atherosclerosis development. Leukotactin-1 (Lkn-1/CCLl5), a new member of the human CC chemokine family, is a potent chemoattractant for leukocytes. Our previous study has demonstrated that Lkn-1/CCL15 plays a role in the initiation of atherosclerosis, however, little is currently known whether Lkn-1/CCL15 is associated with the progression of atherosclerosis. Matrix metalloproteinases (MMPs) in human coronary atherosclerotic lesions playa crucial role in the progression of atherosclerosis by altering the vulnerability of plaque rupture. In the present study, we examined whether Lkn-1/CCLl5 modulates MMP-9 release, which is a prevalent form expressed by activated macrophages and foam cells. Human THP-1 monocytic cells and/or human peripheral blood monocytes (PBMC) were treated with phorbol myristate acetate to induce their differentiation into macrophages. Foam cells were prepared by the treatment of THP-1 macrophages with human oxidized LDL. The macrophages and foam cells were treated with Lkn-1/CCL15, and the levels of MMP-9 release were measured by Gelatin Zymography. Lkn-1/CCL15 significantly enhanced the levels of MMP-9 protein secretion from THP-1 monocytic cells-derived macrophages, human PBMC-derived macrophages, as well as macrophage-derived foam cell in a dose dependent manner. Our data suggest that the action of Lkn-1/CCL15 on macrophages and foam cells to release MMP-9 may contribute to plaque destabilization in the progression of atherosclerosis.

Avenanthramide C as a novel candidate to alleviate osteoarthritic pathogenesis

  • Tran, Thanh-Tam;Song, Won-Hyun;Lee, Gyuseok;Kim, Hyung Seok;Park, Daeho;Huh, Yun Hyun;Ryu, Je-Hwang
    • BMB Reports
    • /
    • v.54 no.10
    • /
    • pp.528-533
    • /
    • 2021
  • Osteoarthritis (OA) is a degenerative disorder that can result in the loss of articular cartilage. No effective treatment against OA is currently available. Thus, interest in natural health products to relieve OA symptoms is increasing. However, their qualities such as efficacy, toxicity, and mechanism are poorly understood. In this study, we determined the efficacy of avenanthramide (Avn)-C extracted from oats as a promising candidate to prevent OA progression and its mechanism of action to prevent the expression of matrix-metalloproteinases (MMPs) in OA pathogenesis. Interleukin-1 beta (IL-1β), a proinflammatory cytokine as a main causing factor of cartilage destruction, was used to induce OA-like condition of chondrocytes in vitro. Avn-C restrained IL-1β-mediated expression and activity of MMPs, such as MMP-3, -12, and -13 in mouse articular chondrocytes. Moreover, Avn-C alleviated cartilage destruction in experimental OA mouse model induced by destabilization of the medial meniscus (DMM) surgery. However, Avn-C did not affect the expression of inflammatory mediators (Ptgs2 and Nos) or anabolic factors (Col2a1, Aggrecan, and Sox9), although expression levels of these genes were upregulated or downregulated by IL-1β, respectively. The inhibition of MMP expression by Avn-C in articular chondrocytes was mediated by p38 kinase and c-Jun N-terminal kinase (JNK) signaling, but not by ERK or NF-κB. Interestingly, Avn-C added with SB203580 and SP600125 as specific inhibitors of p38 kinase and JNK, respectively, enhanced its inhibitory effect on the expression of MMPs in IL-1β treated chondrocytes. Taken together, these results suggest that Avn-C is an effective candidate to prevent OA progression and a natural health product to relieve OA pathogenesis.

Endothelial dysfunction induces atherosclerosis: increased aggrecan expression promotes apoptosis in vascular smooth muscle cells

  • Kim, Sang-Min;Huh, Jae-Wan;Kim, Eun-Young;Shin, Min-Kyung;Park, Ji-Eun;Kim, Seong Who;Lee, Wooseong;Choi, Bongkun;Chang, Eun-Ju
    • BMB Reports
    • /
    • v.52 no.2
    • /
    • pp.145-150
    • /
    • 2019
  • Endothelial dysfunction-induced lipid retention is an early feature of atherosclerotic lesion formation. Apoptosis of vascular smooth muscle cells (VSMCs) is one of the major modulating factors of atherogenesis, which accelerates atherosclerosis progression by causing plaque destabilization and rupture. However, the mechanism underlying VSMC apoptosis mediated by endothelial dysfunction in relation to atherosclerosis remains elusive. In this study, we reveal differential expression of several genes related to lipid retention and apoptosis, in conjunction with atherosclerosis, by utilizing a genetic mouse model of endothelial nitric oxide synthase (eNOS) deficiency manifesting endothelial dysfunction. Moreover, eNOS deficiency led to the enhanced susceptibility against pro-apoptotic insult in VSMCs. In particular, the expression of aggrecan, a major proteoglycan, was elevated in aortic tissue of eNOS deficient mice compared to wild type mice, and administration of aggrecan induced apoptosis in VSMCs. This suggests that eNOS deficiency may elevate aggrecan expression, which promotes apoptosis in VSMC, thereby contributing to atherosclerosis progression. These results may facilitate the development of novel approaches for improving the diagnosis or treatment of atherosclerosis.