• 제목/요약/키워드: Desorption gas

검색결과 253건 처리시간 0.141초

활성탄을 충전한 흡착탑에서 벤젠 회수를 위한 세정공정의 연구 (A Study on Cleaning Process for Benzene Recovery in Activated Carbon Bed)

  • 강성원;민병훈;서성섭
    • 한국응용과학기술학회지
    • /
    • 제19권2호
    • /
    • pp.108-116
    • /
    • 2002
  • Experimental Study was carried out for benzene desorption by purge gas or evacuation in an activated carbon bed. As purge gas flow rate increased, desorption rate increased due to the higher interstitial linear gas velocity. For various purge gas flow rates, desoption curves almost got together if they were plotted against dimensionless time. At a higher flow rate, mass transfer zone became narrower. Temperature drop in the bed was more fast and severe at higher flow rates and higher outer temperature. It was found out that desorption was almost completed when the temperature in the drop of the bed returned to the initial temperature before temperature drop. Desorption by vacuum purge was completed in shorter time than desorption by purge gas. Countercurrent purge was more effective than cocurrent purge.

Sorbent Thermal Desorption/Gas Chromatography/Mass Selective Detection Method for Determination of Gaseous Polycyclic Aromatic Hydrocarbons in Indoor Air

  • Dai, Shugui;Zhang, Lin;Zhu, Tan
    • 분석과학
    • /
    • 제8권4호
    • /
    • pp.753-758
    • /
    • 1995
  • Thermal desorption/gas chromatography/mass selective detection method using Tenax cartridges for the determination of gaseous polycyclic aromatic hydrocarbons(PAH) is described. Glass fiber filter can collect only PAH in particulate. Gaseous PAH may penetrate the filter. Glass cartridge packed Tenax-GC was uses fur adsorption of gaseous PAH. The air of inhalation zone was collected fur 2-10 hours. Cartridges were thermally desorbed in the reverse direction to sample flow. The desorption conditions were as follows; desorption temperature; $300^{\circ}C$; desorption time; 20min; column head pressure; 30psi; inlet split vent; closed during desorption.

  • PDF

제올라이트(faujasite)를 이용한 치환탈착공정에서 에탄, 에틸렌의 흡, 탈착 동특성 (Adsorption and Desorption Dynamics of Ethane and Ethylene in Displacement Desorption Process using Faujasite Zeolite)

  • 이지인;박종호;범희태;이광복;고창현;박성열;이용택;김종남
    • Korean Chemical Engineering Research
    • /
    • 제48권6호
    • /
    • pp.768-775
    • /
    • 2010
  • 제올라이트(faujasite) 흡착제가 충진된 흡착탑에서 에탄/에틸렌 혼합가스의 흡착 동특성과 탈착제로 프로판을 이용한 치환탈착 시의 동특성을 실험 및 이론적으로 연구하였다. 물질수지와 에너지수지를 고려하고 다성분 흡착평형으로 이상흡착상 모델을 적용한 전산모사는 흡탈착 파과곡선 실험 결과를 잘 예측하였다. 흡착파과 시 에탄의 롤-엎은 흡착압력이 높고, 온도가 낮을수록 증가하였다. 에탄/에틸렌 혼합가스로 포화된 흡착탑으로 탈착제인 프로판을 주입하여 치환탈착할 때 탈착단계의 일정 시간 동안에 거의 100%에 가까운 에틸렌을 얻을 수 있었다. 탈착제의 흡착세기는 에틸렌의 탈착 및 재흡착 시에 큰 영향을 미치는 것으로 나타났다. 프로판 대신 흡착세기가 강한 이소부탄을 탈착제로 사용한 경우에 탈착단계 후 재흡착에서 에틸렌 흡착용량이 많이 감소하는 현상이 관찰되었다. 전산모사를 통하여 ${(q_s{\times}b)}_{C_2H_4}/{(q_s{\times}b)}_{C_3H_s}$의 비율이 0.83일 때, 즉 탈착제와 에틸렌이 거의 유사한 정도의 흡착세기를 가질 때 치환탈착공정의 성능이 우수하였다.

소수성 HY-형 제올라이트제 하니컴의 제조 및 그 하니컴의 벤젠, o-xylene, MEK에 대한 흡.탈착특성 (Manufacture of the Hydrophobic HY-type Zeolite-honeycomb and Its Adsorption/Desorption Characteristics for the Benzene, o-xylene, and MEK)

  • 모세영;전동환;권기승;손종렬
    • 한국대기환경학회지
    • /
    • 제23권1호
    • /
    • pp.84-96
    • /
    • 2007
  • We performed the experiments to manufacture the hydrophobic $200cells/in^2$-zeolite honeycomb using HY-type zeolite of Si/Al ratio of 80 for separating and removing the VOCs emitted from small and medium size-plants by adsorption and to determine the drying method for the honeycomb at $105^{\circ}C$ without cracking, then measured performances of the honeycomb to adsorb the benzene, o-xylene, and MEK and to desorb the benzene and MEK saturated on the honeycomb by the nitrogen gas as the desorption gas. As a results, the good honeycomb was formed and the honeycomb was not cracked when the mixing ratio of the zeolite to bentonite to methyl cellulose to polyvinyl alcohol to glycerine to water is 100 : 8.73 : 2.18 : 4.19 : 1.38 : 126 and dried the honeycomb at $105^{\circ}C$ for 24 hours in the drying oven. The shape of the dried honeycomb was not changed after calcination, and the compressive strengths of the honeycomb after drying and calcination were 6.7 and $0.69kg/cm^2$, respectively. The adsorption efficiencies of the honeycomb for benzene, o-xylene, and MEK were $92{\sim}96%$ at the room temperature. The desorption efficiency at $180^{\circ}C$ was higher than that at $150^{\circ}C\;by\;1.5{\sim}13.8%$ depending on the flow rate of the nitrogen gas, and it was found that desorption efficiency is higher than 85% at $180^{\circ}C$ and 1.0L/min of the nitrogen gas. At $180^{\circ}C$ and 0.2 L/min, the concentration of the benzene and MEK in the used desorption gas are higher than 40,000 and 50,000ppm, respectively, so it be used as the fuel for preheating the desorption gas fed into the column in desorption cycle.

드레인-소스 전극 간극의 변화에 따른 Gas Sensor의 열에너지 확산 해석 (Heat Energy Diffusion Analysis in the Gas Sensor Body with the Variation of Drain-Source Electrode Distance)

  • 장경욱
    • 한국전기전자재료학회논문지
    • /
    • 제30권9호
    • /
    • pp.589-595
    • /
    • 2017
  • MOS-FET structured gas sensors were manufactured using MWCNTs for application as NOx gas sensors. As the gas sensors need to be heated to facilitate desorption of the gas molecules, heat dispersion plays a key role in boosting the degree of uniformity of molecular desorption. We report the desorption of gas molecules from the sensor at $150^{\circ}C$ for different sensor electrode gaps (30, 60, and $90{\mu}m$). The COMSOL analysis program was used to verify the process of heat dispersion. For heat analysis, structure of FET gas sensor modeling was proceeded. In addition, a property value of the material was used for two-dimensional modeling. To ascertain the degree of heat dispersion by FEM, the governing equations were presented as partial differential equations. The heat analysis revealed that although a large electrode gap is advantageous for effective gas adsorption, consideration of the heat dispersion gradient indicated that the optimal electrode gap for the sensor is $60{\mu}m$.

공기 중 휘발성 유기화합물의 측정을 위한 열탈착-분석시스템의 구성 및 평가 (Composition and Evaluation of the Thermal Desorption-Gas Chromatographic System for the Measurement of Volatile Organic Compounds in Air)

  • 이수형;송희남;김희갑
    • Environmental Analysis Health and Toxicology
    • /
    • 제17권1호
    • /
    • pp.63-71
    • /
    • 2002
  • The thermal desorption-gas chromatographic (TD-GC) system has been constructed for the measurement of volatile organic compounds. The thermal desortion unit is composed of four major parts: 1) the control part; 2) the thermal desorption part; 3) the focusing part; and 4) the injection part. The peltier element was introduced to the focusing part for the temperature of the focusing tube to reach-35$^{\circ}C$. The system was tested for the linearity of the calibration curves and reproducibility of instrumental analyses using some disinfection by-products (DBPs) and BTXs (benzene, toluene and p-xylene). The coefficients of determination (r$^2$) for all the calibration curves made were higher than 0.998, and the coefficients of variation (CV) for triplicate measurements were all within 10%. The system also has been tested for field applicability. The analysis of field samples showed that there was no breakthrough problem in the sampling system and that the system could be applied to field measurements.

벤젠에 대한 활성탄 및 제올라이트 13X를 충진한 흡착탑에서 탈착 특성 (Characteristics of Desorption for Benzene in Activated Carbon and Zeolite 13X Packed Bed)

  • 강성원;서성섭;민병훈
    • 공업화학
    • /
    • 제17권2호
    • /
    • pp.201-209
    • /
    • 2006
  • 활성탄과 제올라이트 13X를 충진시킨 흡착탑에 흡착질인 벤젠을 포화 흡착시킨 후 여러 가지 탈착 방법에 대한 효율을 살펴보았다. 뜨거운 수증기에 의한 탈착, 세정 기체에 의한 탈착, 진공에 의한 탈착 등을 실험하였고, 그 결과 뜨거운 수증기에 의한 탈착이 가장 좋은 탈착 방법으로 판단되었다. 또한 뜨거운 수증기는 흡착탑 내의 온도를 상승시키면서 탈착을 야기시키고 수증기 탈착 과정 이후에는 건조 공정이 수반되어야만 효율이 높아짐을 알 수 있었다. 건조 공정이 수반되지 않을 경우는 수증기가 추후에 흡착을 방해하는 결과를 초래하였다. 진공에 의한 탈착은 효과가 매우 적은 것으로 나타났는데 이로부터 벤젠의 경우에 압력 변화에 의한 탈착 보다는 온도 변화에 의한 탈착이 더 효과적인 것으로 판단되었다. 세정 기체에 의한 탈착에서는 진공 탈착과 함께 이루어질 때 좋은 탈착 성능이 나타남을 알 수 있었다.

간접열탈착방식을 이용한 원유오염토양 정화효율 평가 (The Study of Crude Oil Contaminated Soil Remediation by Indirect Thermal Desorption)

  • 이인;김종성;정태양;오승택;김국진
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제21권3호
    • /
    • pp.14-20
    • /
    • 2016
  • Remediation of crude oil contaminated soil is complicate and hard to apply traditional methods because of its persistency, durability, and high viscosity. Therefore, in this study, the efficiency of crude oil contaminated soil remediation was tested by developing a pilot-scale thermal desorption system using the indirect heating method with an exhaust gas treatment. Under optimal condition drawed by temperature and retention time, the remedial efficiency of crude oil contaminated soil and treatability of exhaust gas were analyzed. Total Petroleum Hydrocarbon (TPH) concentration of crude oil contaminated soil was decreased to 69.7 mg/kg on average and the remedial efficiency was measured at 99.60%. Through the exhaust gas, 86.0% of Volatile Organic Compounds (VOC) was degraded and 97.16% of complex malodor was reduced under the suggested optimum operation condition. This study provides important basic data to be useful in scaling up of the indirect thermal desorption system for the remediation of crude oil contaminated soil.

원통형 활성탄 카트리지 내 폐활성탄의 휘발성 유기화합물 저온 탈착 특성 (Characteristics of Low Temperature Desorption of Volatile Organic Compounds from Waste Activated Carbon in Cylindrical Cartridge)

  • 강신욱;이성우;손두정;한문조;이태호;홍성오
    • 청정기술
    • /
    • 제27권1호
    • /
    • pp.79-84
    • /
    • 2021
  • 본 연구에서는 도장 공정에서 사용된 폐활성탄을 원통형 카트리지에 충진하여 저온 가스에 의한 탈착 특성을 파악하였다. 폐활성탄의 탈착유량을 결정하기 위하여 활성탄의 톨루엔 흡착 및 탈착 실험을 진행하였다. 실험결과에서 1, 2, 4 ㎥ min-1의 유량으로 탈착을 하였을 때 높은 THC 농도와 탈착시간에 의하여 2 ㎥ min-1이 적절하다고 판단하였다. 폐활성탄은 탈착시간 초기에 가스성분에서 비점이 낮은 2-butanone과 MIBK (methyl isobutyl ketone)가 높은 비율로 발생되었고, 그 이후에는 THC의 농도가 감소하면서 BTX계열이 상대적으로 높은 비율로 탈착되었다. 폐활성탄의 탈착시간 동안 발생되는 가스 성분의 총 열량은 316 kcal kg-1으로 나타났다. 폐활성탄을 이용하여 톨루엔으로 5회 반복 재생한 결과에서는 요오드가 및 비표면적이 신탄에 비하여 상대적으로 낮은 것으로 분석되었다. 원통형 카트리지 2개를 직렬로 연결한 탈착실험에서는 최대 THC농도가 약 470 ppm으로 나타났다.

Catalyst-aided Regeneration of Amine Solvents for Efficient CO2 Capture Process

  • Bhatti, Umair H.;Sultan, Haider;Cho, Jin Soo;Nam, Sungchan;Park, Sung Youl;Baek, Il Hyun
    • 에너지공학
    • /
    • 제28권4호
    • /
    • pp.8-12
    • /
    • 2019
  • Thermal amine scrubbing is the most advanced CO2 capture technique but its largescale application is hindered due to the large heat requirement during solvent regeneration step. The addition of a solid metal oxide catalysts can optimize the CO2 desorption rate and thus minimize the energy consumption. Herein, we evaluate the solvent regeneration performance of Monoethanolamine (MEA) and Diethanolamine (DEA) solvents without and with two metal oxide catalysts (TiO2 and V2O5) within a temperature range of 40-86℃. The solvent regeneration performance was evaluated in terms of CO2 desorption rate and overall amount of CO2 desorbed during the experiments. Both catalysts improved the solvent regeneration performance by desorbing greater amounts of CO2 with higher CO2 desorption rates at low temperature. Improvements of 86% and 50% in the CO2 desorption rate were made by the catalysts for MEA and DEA solvents, respectively. The total amount of the desorbed CO2 also improved by 17% and 13% from MEA and DEA solvents, respectively. The metal oxide catalyst-aided regeneration of amine solutions can be a new approach to minimize the heat requirement during solvent regeneration and thus can remove a primary shortfall of this technology.