• Title/Summary/Keyword: Desorption efficiency

검색결과 224건 처리시간 0.038초

Co-sensitization of N719 with an Organic Dye for Dye-sensitized Solar Cells Application

  • Wu, Zhisheng;Wei, Yinni;An, Zhongwei;Chen, Xinbing;Chen, Pei
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권5호
    • /
    • pp.1449-1454
    • /
    • 2014
  • The co-sensitization of N719 with a cyclic thiourea functionalized organic dye, coded AZ5, for dye-sensitized solar cells (DSSCs) was demonstrated. Due to its intensive absorption in ultraviolet region, AZ5 could compensate the loss of light harvest induced by triiodide, thereby the short-circuit photocurrent density ($J_{sc}$) was increased for co-sensitized (N719+AZ5) DSSC. Moreover, the electron recombination and dye aggregation were retarded upon N719 cocktail co-sensitized with AZ5, thus the open-circuit voltage ($V_{oc}$) of co-sensitized device was enhanced as well. The increased $J_{sc}$ (17.9 $mA{\cdot}cm^{-2}$) combined with the enhanced $V_{oc}$ (698 mV) ultimately resulted in an improved power conversion efficiency (PCE) of 7.91% for co-sensitized DSSC, which was raised by 8.6% in comparison with that of N719 (PCE = 7.28%) sensitized alone. In addition, co-sensitized DSSC exhibited a better stability than that of N719 sensitized device probably due to the depression of dye desorption.

광촉매(光觸媒) 산화(酸化) 반응(反應)을 이용한 클로로페놀 분해(分解)에 관한 연구(硏究) (A Study on the Removal of Chloro-Phenols by Photocatalytic Oxidation)

  • 이상협;박주석;박중현
    • 상하수도학회지
    • /
    • 제9권4호
    • /
    • pp.87-96
    • /
    • 1995
  • The Electron/Hole Pair is generated when the activation energy produced by ultraviolet ray illuminates to the semiconductor and OH- ion produced by water photocleavage reacts with positive Hole. As a results, OH radical acting as strong oxidant is generated and then Photocatalytic oxidation reaction occurs. The photocatalytic oxidation can oxidate the non-degradable and hazardous organic substances such as pesticides and aromatic materials easier, safer and shorter than conventional water treatment process. So in this study, many factors influencing the oxidation of chlorophenols, such as inorganic electrolytes addition, change of oxygen and nitrogen atmosphere, temperature, pH, oxygen concentration, chlorophenol concentration, were throughly examined. According to the experiments observations, it is founded that the rate of chlorophenol oxidation follows a first-order reaction and the modified Langmuir-Hinshelwood relationship. And the photocatalytic oxidation occurs only when activation energy acting as Electron/Hole generation, oxygen acting as electron acceptor to prevent Electron/Hole recombination, $TiO_2$ powder acting as photocatalyst are present. The effects of variation of dissolved oxygen concentration, temperature and inorganic electrolytes concentration on 2-chlorophenol oxidation are negligible. And the lower the organic concentration, the higher the oxidation efficiency becomes. Therefore, the photocatalytic oxidation is much effective to oxidation of hazardous substances at very low concentration. The oxidation is effective in the range of 0.1 g/L-10 g/L of $TiO_2$. Finally when the ultra-violet ray is illuminated to $TiO_2$, the surface characteristics of $TiO_2$ change and Adsorption/Desorption reaction on $TiO_2$ surface occurs.

  • PDF

구형 축열체를 사용한 축열기의 성능예측: 압력손실과 열전달의 관계 (Performance Prediction of Heat Regenerators with using Spheres: Relation between Heat Transfer and Pressure Drop)

  • 조한창;조길원;이용국
    • 에너지공학
    • /
    • 제12권1호
    • /
    • pp.35-41
    • /
    • 2003
  • 본 연구에서는 배가스의 현열회수를 통해 연소기기의 열효율을 향상시키는 축열연소시스템에서 구형축열체를 이용한 축열기내 열유동을 해석할 수 있는 수치해석 코드를 개발하였다. 이를 통해 축열기내 비정상 열유동을 해석하고 축열기 길이를 포함한 축열기 형상과 축열체 구경에 따른 배열회수와 압력손실의 관계를 파악해 보았다. 수치해석은 1차원 2상 유체역학 모델을 도입하여 MacCormack방식으로 해를 얻었으며, 실험적 경향과 일치함을 알 수 있었다. 개발된 수치코드를 통해 얻은 결론은 축열기 길이가 길고 입자구경이 작으며 축열기내 유체 유속이 빠른 경우에 많은 배열을 회수할 수 있으나 압력손실이 커짐을 알 수 있었다.

Adsorption of Heavy Metal Ions onto Chemically Oxidized Ceiba pentandra (L.) Gaertn. (Kapok) Fibers

  • Chung, Byung-Yeoup;Cho, Jae-Young;Lee, Min-Hee;Wi, Seung-Gon;Kim, Jin-Hong;Kim, Jae-Sung;Kang, Phil-Hyun;Nho, Young-Chang
    • Journal of Applied Biological Chemistry
    • /
    • 제51권1호
    • /
    • pp.28-35
    • /
    • 2008
  • The physico-chemical properties of kapok fibers were altered via the combination processes of chlorite-periodate oxidation, in order to assess their efficacy as a heavy metal adsorbent. The chemically-oxidized kapok fibers were found to harbor a certain amount of polysaccharides, together with lowered lignin content. This alteration in lignin characteristics was clearly confirmed via FTIR and NBO yield. Moreover, chemically oxidized kapok fibers retained their hollow tube shape, although some changes were noted. The chemically oxidized kapok fibers evidenced elevated ability to adsorb heavy metal ions with the best fit for the Langmuir adsorption isotherm model. Three cycles of adsorption-desorption were conducted with in-between regeneration steps. Our experimental results indicated that chemically oxidized kapok fibers possessed excellent adsorption characteristics, and the modified kapok fibers could be completely regenerated with almost equimolar diluted sodium hydroxide. Pb, Cu, Cd and Zn ions evidenced adsorption rates of 93.55%, 91.83%, 89.75%, and 92.85% on the chemically oxidized kapok fibers. The regeneration efficiency showed 73.58% of Pb, 71.55% of Cu, 66.87% of Cd, and 75.00% of Zn for 3rd cycle with 0.0125N NaOH.

Breakthrough behaviour of NBC canister against carbon tetrachloride: a simulant for chemical warfare agents

  • Srivastava, Avanish Kumar;Shah, D.;Mahato, T.H.;Singh, Beer;Saxena, A.;Verma, A.K.;Shrivastava, S.;Roy, A.;Yadav, S.S.;Shrivastava, A.R.
    • Carbon letters
    • /
    • 제13권2호
    • /
    • pp.109-114
    • /
    • 2012
  • A nuclear, biological, chemical (NBC) canister was indigenously developed using active carbon impregnated with ammoniacal salts of copper (II), chromium (VI) and silver (I), and high efficiency particulate aerosol filter media. The NBC canister was evaluated against carbon tetra chloride ($CCl_4$) vapours, which were used as a simulant for persistent chemical warfare agents under dynamic conditions for testing breakthrough times of canisters of gas masks in the National Approval Test of Respirators. The effects of $CCl_4$ concentration, test flow rate, temperature, and relative humidity (RH) on the breakthrough time of the NBC canister against $CCl_4$ vapour were also studied. The impregnated carbon that filled the NBC canister was characterized for surface area and pore volume by $N_2$ adsorption-desorption isotherm at liquid nitrogen temperature. The study clearly indicated that the NBC canister provides adequate protection against $CCl_4$ vapours. The breakthrough time decreased with the increase of the $CCl_4$ concentration and flow rate. The variation in temperature and RH did not significantly affect the breakthrough behaviour of the NBC canister at high vapour concentration of $CCl_4$, whereas the breakthrough time of the NBC canister was reduced by an increase of RH at low $CCl_4$ vapour concentration.

고온 SCR 촉매의 반응 특성 및 효율 증진에 관한 연구 (A Study on the Reaction Characteristics and Efficiency Improvement of High-temperature SCR Catalyst)

  • 남기복;강연석;홍성창
    • 공업화학
    • /
    • 제26권6호
    • /
    • pp.666-673
    • /
    • 2015
  • 본 연구에서는 고온영역에서 NOx를 제어하기 위한 선택적 환원촉매(SCR)의 연구를 수행하였다. 제조된 촉매들의 구조적 특성 및 흡 탈착 특성을 확인하기 위하여 XRD, FT-IR 분석을 수행하였다. Anatase $TiO_2$ 지지체의 경우 미미한 NOx 전환율을 나타내었으며, 이에 W을 활성금속으로 하여 제조한 $W/TiO_2$ 촉매에서 우수한 NOx 제거 능력을 보였다. 특히 $400^{\circ}C$ 이상의 고온영역에서 순수 $TiO_2$의 NOx 전환율보다 W이 함유된 $W/TiO_2$의 촉매에서 급격한 활성 증가를 확인할 수 있었다. 또한, 장시간의 열충격에 따른 반응활성이 감소되는 현상이 억제됨을 확인하였다.

Extracting Gold from Pyrite Roster Cinder by Ultra-Fine-Grinding/Resin-in-Pulp

  • Guo, Bingkun;Wei, Junting
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 The 6th International Symposium of East Asian Resources Recycling Technology
    • /
    • pp.337-341
    • /
    • 2001
  • A new method to extract gold from pyrite roster cinder, which combines ultra-fine-grinding with resin-in-pulp, has been studied in this paper. Compared with traditional leaching technology, it can short leaching time, avoid complex filter process, lower sodium cyanide consumption and increase gold recovery by 35%. During leaching, aluminium oxide ball was used as stirred medium, hydrogen peroxide as leaching aid and sodium hexametaphosphate as grinding aid. With the high efficiency and chemistry effect of ultra-fine-grinding, the leaching process was developed and the gold leaching rate may reach 88%. With AM-2 Б resin as abosorber and sulfocarbamide (TU) as eluent, gold was recovered from cyanide pulp by resin-in-pulp. AM-2 Б resin has good adsorbability in cyanide solution(pH=10). It was easy to elude gold from the loaded resin with 0.1㏖/L cholhydric acid and 1㏖/L sulfocabamide. The effect of contact time, temperature and acidity etc. on the gold absorption had been examined with static methods. The results showed that the adsorption and desorption of gold could both reach over 98%. The effects of flow rate of solution on dynamic adsorption and elution of gold had been examined with dynamic methods. Breakthrough curve and elution curve had been drawn in this paper. A mild condition was determined through a number of experiments: leaching time 2 hours, liquid solid ratio 4:1, sodium cyanide 3kg/t, hydrogen peroxide 0.05%, sodium hexametaphosphate 0.05%; adsorption time 30 minutes, temperature 10-3$0^{\circ}C$, resin($m\ell$) solid(g) ratio 1:10, eluent resin ratio 10-20:1, velocity of eluent $1.5m\ell$/min. Under the mild condition, the gold recovery may reach 85%.

  • PDF

Vanadium(V) removal from aqueous solutions using a new composite adsorbent (BAZLSC): Optimization by response surface methodology

  • Mojiri, Amin;Hui, Wang;Arshad, Ahmad Kamil;Ridzuan, Ahmad Ruslan Mohd;Hamid, Nor Hayati Abdul;Farraji, Hossein;Gholami, Ali;Vakili, Amir Hossein
    • Advances in environmental research
    • /
    • 제6권3호
    • /
    • pp.173-187
    • /
    • 2017
  • Heavy metals, such as vanadium, are some of the most toxic types of water contaminants. In this study, vanadium was removed using a new composite adsorbent called BAZLSC. The impacts of pH and initial concentration of vanadium(V) on the elimination effectiveness of this metal by using BAZLSC were investigated in the first step of the study. Vanadium removal increased as pH increased to 3-3.5, and initial concentration increased to 60-70 mg/L. The removal efficiency then decreased. Central composite design and response surface methodology were employed to examine experimental data. Initial concentration of V ($mg.L^{-1}$), pH, and dosage of adsorbent (g/L) were the independent factors. Based on RSM, the removal effectiveness of vanadium was 86.36% at the optimum of initial concentration (52.69 mg/L), pH (3.49), and adsorbent dosage (1.71 g/L). Also adsorption isotherm investigations displayed that the Freundlich isotherm could explain vanadium adsorption by BAZLSC better than the Langmuir isotherm. Beside them, desorption studies showed sorption was slightly diminished after six continuous cycles.

정전기적 흡·탈착 공정에서의 탄소 전극 (Carbon Electrodes in Capacitive Deionization Process)

  • 정상호;이재광;조이 오콘;손영일;이재영
    • 공업화학
    • /
    • 제25권4호
    • /
    • pp.346-351
    • /
    • 2014
  • 인구증가와 산업화로 인한 물의 수요 급증에 따른 제3세대 수처리 기술로써 정전기적 흡 탈착 공정에 대한 연구가 진행되고 있다. 정전기적 흡 탈착 기술의 경우, 기존에 사용되는 수처리 방법들에 비해 에너지 소비량이 적으며, 재생시에 2차 오염이 발생하지 않아 차세대 수처리 기술로 주목 받고 있다. 정전기적 흡 탈착 기술에서 이온 제거를 위한 전극 물질로는 넓은 비표면적과 높은 전도도를 갖는 탄소 전극이 주로 사용된다. 현재 다양한 탄소 물질로 이루어진 전극에 대한 연구가 수행되고 있으며, 특히 비표면적, 기공 분포에 따른 흡 탈착 연구가 활발히 진행되고 있다. 본 총설에서는 다양한 탄소 물질 및 기공 분포에 따른 영향을 분석하고, 메조기공과 마이크로기공이 조화를 이루는 최적의 조건을 제시하고자 한다.

Measurement Uncertainty of Nicotine in Environmental Tobacco Smoke (ETS)

  • Lee, Jeong-Il;Lee, Cheol Min;Shim, In-Keun;Kim, Seong-Mi;Lee, Woo-Seok;Kim, Yoon-Shin
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권8호
    • /
    • pp.2394-2398
    • /
    • 2013
  • Nicotine is the main component of environmental tobacco smoke, and its presence in indoor air is widely used as a secondhand-smoke indicator. Environmental tobacco smoke is a major source of indoor air pollution, but sufficient investigation of the uncertainty of its measurement, which mirrors the reliability of nicotine measurement, has not been performed. We calculated the uncertainty of measurement of indoor air nicotine concentration at low, medium, and high concentrations of 11.3798, 10.1977, $98.3768{\mu}g/m^3$, respectively, and we employed the Guide to the Expression of Uncertainty in Measurements (GUM), proposed by the International Organization for Standardization (ISO). The factors considered in determining the uncertainty were uncertainty of the calibration curve (calibration curve and repeated measurements), desorption efficiency, extraction volume, and sampling airflow (accuracy and acceptable limits of flowmeter). The measurement uncertainty was highest at low concentrations; the expanded measurement uncertainty is $0.9435{\mu}g/m^3$ and is represented as a relative uncertainty of 63.38%. At medium and high (concentrations, the relative uncertainty was 13.1% and 9.1%, respectively. The uncertainty of the calibration curve was largest for low indoor nicotine concentrations. To increase reliability of measurement in assessing the effect of secondhand smoke, measures such as increasing the sample injection rate ($1{\mu}L$ or more), increasing sampling volume to increase collected nicotine, and using gas chromatography-mass spectrometry (GC/MS) or GC/MS/MS, which has a lower quantitation threshold, rather than gas chromatography with nitrogen phosphorous detector, should be considered.