• Title/Summary/Keyword: Desktop scanner

Search Result 8, Processing Time 0.019 seconds

Effect of the volumetric dimensions of a complete arch on the accuracy of scanners

  • Kim, Min-Kyu;Son, KeunBaDa;Yu, Beom-Young;Lee, Kyu-Bok
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.6
    • /
    • pp.361-368
    • /
    • 2020
  • PURPOSE. The present study aimed to evaluate the accuracy of a desktop scanner and intraoral scanners based on the volumetric dimensions of a complete arch. MATERIALS AND METHODS. Seven reference models were fabricated based on the volumetric dimensions of complete arch (70%, 80%, 90%, 100%, 110%, 120%, and 130%). The reference models were digitized using an industrial scanner (Solutionix C500; MEDIT) for the fabrication of a computer-aided design (CAD) reference model (CRM). The reference models were digitized using three intraoral scanners (CS3600, Trios3, and i500) and one desktop scanner (E1) to fabricate a CAD test model (CTM). CRM and CTM were then superimposed using inspection software, and 3D analysis was conducted. For statistical analysis, one-way analysis of variance was used to verify the difference in accuracy based on the volumetric dimensions of the complete arch and the accuracy based on the scanners, and the differences among the groups were analyzed using the Tukey HSD test as a post-hoc test (α=.05). RESULTS. The three different scanners showed a significant difference in accuracy based on the volumetric dimensions of the complete arch (P<.05), but the desktop scanner did not show a significant difference in accuracy based on the volumetric dimensions of the complete arch (P=.808). CONCLUSION. The accuracy of the intraoral scanners was dependent on the volumetric dimensions of the complete arch, but the volumetric dimensions of the complete arch had no effect on the accuracy of the desktop scanner. Additionally, depending on the type of intraoral scanners, the accuracy differed according to the volumetric dimensions of the complete arch.

Comparison of Reproducibility of Linear Measurements on Digital Models among Intraoral Scanners, Desktop Scanners, and Cone-beam Computed Tomography

  • Jo, Deuk-Won;Kim, Mijoo;Kim, Reuben H.;Yi, Yang-Jin;Lee, Nam-Ki;Yun, Pil-Young
    • Journal of Korean Dental Science
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • Purpose: Intraoral scanners, desktop scanners, and cone-beam computed tomography (CBCT) are being used in a complementary way for diagnosis and treatment planning. Limited patient-based results are available about dimensional reproducibility among different three-dimensional imaging systems. This study aimed to evaluate dimensional reproducibility among patient-derived digital models created from an intraoral scanner, desktop scanner, and two CBCT systems. Materials and Methods: Twenty-nine arches from sixteen patients who were candidates for implant treatments were enrolled. Different types of CBCT systems (KCT and VCT) were used before and after the surgery. Polyvinylsiloxane impressions were taken on the enrolled arches after the healing period. Gypsum casts were fabricated and scanned with an intraoral scanner (CIOS) and desktop scanner (MDS). Four test groups of digital models, each from CIOS, MDS, KCT, and VCT, respectively, were compared to the reference gypsum cast group. For comparison of linear measurements, intercanine and intermolar widths and left and right canine to molar lengths were measured on individual gypsum cast and digital models. All measurements were triplicated, and the averages were used for statistics. Bland-Altman plots were drawn to assess the degree of agreement between each test group with the reference gypsum cast group. A linear mixed model was used to analyze the fixed effect of the test groups compared to the reference group (α=0.05). Result: The Bland-Altman plots showed that the bias of each test group was -0.07 mm for CIOS, -0.07 mm for MDS, -0.21 mm for VCT, and -0.25 mm for KCT. The linear mixed model did not show significant differences between the test and reference groups (P>0.05). Conclusion: The linear distances measured on the digital models created from CIOS, MDS, and two CBCT systems showed slightly larger than the references but clinically acceptable reproducibility for diagnosis and treatment planning.

Accuracy evaluation of dental models manufactured by CAD/CAM milling method and 3D printing method

  • Jeong, Yoo-Geum;Lee, Wan-Sun;Lee, Kyu-Bok
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.3
    • /
    • pp.245-251
    • /
    • 2018
  • PURPOSE. To evaluate the accuracy of a model made using the computer-aided design/computer-aided manufacture (CAD/CAM) milling method and 3D printing method and to confirm its applicability as a work model for dental prosthesis production. MATERIALS AND METHODS. First, a natural tooth model (ANA-4, Frasaco, Germany) was scanned using an oral scanner. The obtained scan data were then used as a CAD reference model (CRM), to produce a total of 10 models each, either using the milling method or the 3D printing method. The 20 models were then scanned using a desktop scanner and the CAD test model was formed. The accuracy of the two groups was compared using dedicated software to calculate the root mean square (RMS) value after superimposing CRM and CAD test model (CTM). RESULTS. The RMS value ($152{\pm}52{\mu}m$) of the model manufactured by the milling method was significantly higher than the RMS value ($52{\pm}9{\mu}m$) of the model produced by the 3D printing method. CONCLUSION. The accuracy of the 3D printing method is superior to that of the milling method, but at present, both methods are limited in their application as a work model for prosthesis manufacture.

Last Design for Men's Shoes using 3D Foot Scanner and 3D Printer (3D 발 스캐너와 3D 프린터를 이용한 남성화 라스트 설계)

  • Oh, Seol-Young;Suh, Dong-Ae;Kim, Hyung-Gyu
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.2
    • /
    • pp.186-199
    • /
    • 2016
  • The shoe last which is the framework for the shoemaking is intensively combined with the 3D data and technologies. International shoe companies have already commercialized 3D printing technology in producing the shoe, but domestic shoe companies are still in their early stages. This study used the 3D scanning, 3D modeling and 3D printing of the high-technology to make the shoe last. This 3D producing processes should be helpful in building competitiveness in domestic shoe industry. The 3D foot scanning data of men in 30s(n=200) were collected in SizeKorea(2010). The basic statistics, factor and cluster analysis were performed. They were categorized in 3 groups by 3D foot measurement data, and the standard models were selected in each group. The cross sections in XY, YZ and XZ planes sliced from 3D scan data of the standard model were used in the sketches of the 3D shoe last modeling. The 3D shoe last was modeled by Solidworks CAD and printed by MakerBot Replicator2; a desktop 3D printer. This research showed the potential for utilization of 3D printing technology in the domestic shoe industry. The 3D producing process; 3D scanning, 3D modeling and 3D printing is expected to utilized widely in the fashion industry within the nearest future.

Fabrication of fixed prosthesis by employing functionally generated path technique and dual scan technique in a tardive dyskinesia patient: a case report (지연성 운동이상증 환자에서 functionally generated path 술식과 이중스캔법을 이용한 고정성 보철물 제작: 증례 보고)

  • Shilpa;Du-Hyeong Lee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.61 no.3
    • /
    • pp.227-233
    • /
    • 2023
  • Tardive dyskinesia is an involuntary neurological movement disorder caused by long-term use of dopamine receptor-blocking drugs leading to dental implications like uncontrolled gnashing and grinding of teeth which in turn imperil the oral rehabilitation procedures as the excessive load increases the risk of prosthesis fracture. A 40-year male with a medical history of tardive dyskinesia visited the hospital to receive oral rehabilitation for missing maxillary anterior teeth. After the oral examination, tooth preparation was done on teeth 13, 15, and 23. After that silicon impression was made and the gypsum cast was digitalized using a desktop scanner and an interim prosthesis was fabricated by milling a resin block. During the try-in, the occlusal one-third of the interim prosthesis was trimmed, and an auto-polymerizing acrylic resin was applied on the occlusal surfaces and inserted in the patient's mouth. Then, the functionally generated path (FGP) of occluding surfaces of opposing arches was traced on the resin surface. When the resin was hardened, the modified interim prosthesis was removed and digitized using an intraoral scanner. The scan image was used in designing the occlusal morphology of definitive prosthesis by modifying the design of the interim prosthesis using the dual scan method. Lastly, a monolithic zirconia prosthesis was fabricated by milling a zirconia block. The definitive prosthesis was delivered reflecting the patient's occlusal scheme. This case report shows that the FGP technique with the dual scan method can help in fabricating fixed prosthesis with harmonious occlusion in a tardive dyskinesia patient.

Evaluation of the accuracy of three different intraoral scanners for endocrown digital impression: An in vitro study (엔도크라운 디지털 인상을 위한 구강스캐너 3종의 정확도 평가: 실험실 연구)

  • Ural, Cagri;Park, Ji-Man;Kaleli, Necati;Caglayan, Esma
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.58 no.4
    • /
    • pp.282-289
    • /
    • 2020
  • Purpose: The aim of this in vitro study was to evaluate the accuracy of three different intraoral scanners (IOSs) on digital impressions of different types of endocrown cavity preparations. Materials and methods: Two human mandibular molar teeth were prepared with different endocrown abutment designs: one with a buccal wall (Class 2) and the other without a buccal wall (Class 3). Both cavity designs were scanned using a reference desktop scanner (E3) and three different intraoral scanners: Trios3 (TRI group), Cerec Omnicam (CER group), and i500 (I5 group). The obtained Standard Tessellation Language (.stl) datasets were exported to metrology software. The precision was evaluated based on deviations among repeated scan models recorded by each IOS. The trueness was evaluated based on deviations between the reference data and repeated scans. For detecting interaction, data were statistically analyzed using a univariate analysis of variance (ANOVA) and for analyzing the comparison of the test groups data were analyzed by one-way ANOVA and post-hoc Tukey test at the significance level of .05. Results: The deviation values for both cavity designs in the I5 group were significantly lower than those in the other IOS groups in terms of trueness. For both cavity designs, the TRI group exhibited better precision than the other IOS groups. Conclusion: Different technologies of IOS device's and different endocrown prepration designs affected the accuracy of the digital scans.

Comparison of Flexural Strength of Three-Dimensional Printed Three-Unit Provisional Fixed Dental Prostheses according to Build Directions

  • Park, Sang-Mo;Park, Ji-Man;Kim, Seong-Kyun;Heo, Seong-Joo;Koak, Jai-Young
    • Journal of Korean Dental Science
    • /
    • v.12 no.1
    • /
    • pp.13-19
    • /
    • 2019
  • Purpose: The aim of this study was to compare the flexural strength of provisional fixed dental prostheses which was three-dimensional (3D) printed by several build directions. Materials and Methods: A metal jig with two abutment teeth and pontic space in the middle was fabricated. This jig was scanned with a desktop scanner and provisional restoration was designed on dental computer-aided design program. On the preprocessing software, the build angles of the restorations were arranged at $0^{\circ}$, $30^{\circ}$, $45^{\circ}$, $60^{\circ}$, and $90^{\circ}$ and support was added and resultant structure was sliced to a thickness of $100{\mu}m$. Processed restorations were printed with digital light processing type 3D printer using poly methyl meta acrylate-based resin. After washing and post-curing, compressive loading was applied at a speed of 1 mm/min on a metal jig fixed to a universal testing machine. The maximum pressure at which fracture occurred was measured. For the statistical analysis, build direction was set as the independent variable and fracture strength as the dependent variable. One-way analysis of variance and Tukey's post hoc analysis was conducted to compare fracture strength among groups (${\alpha}=0.05$). Result: The mean flexural strength of provisional restoration 3D printed with the build direction of $0^{\circ}$ was $1,053{\pm}168N$; it was $1,183{\pm}188N$ at $30^{\circ}$, $1,178{\pm}81N$ at $45^{\circ}$, $1,166{\pm}133N$ at $60^{\circ}$, and $949{\pm}170N$ at $90^{\circ}$. The group with a build direction of $90^{\circ}$ showed significantly lower flexural strength than other groups (P<0.05). The flexural strength was significantly higher when the build direction was $30^{\circ}$ than when it was $90^{\circ}$ (P<0.01). Conclusion: Among the build directions $0^{\circ}$, $30^{\circ}$, $45^{\circ}$, $60^{\circ}$, and $90^{\circ}$ set for 3D printing of fixed dental prosthesis, an orientation of $30^{\circ}$ is recommended as an effective build direction for 3D printing.

Comparison of marginal and internal fit of 3-unit monolithic zirconia fixed partial dentures fabricated from solid working casts and working casts from a removable die system (가철성 다이 시스템으로 제작된 작업 모형과 솔리드 작업 모형 상에서 제작된 지르코니아 3본 고정성 치과 보철물의 변연 및 내면 적합도 비교)

  • Wan-Sun Lee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.40 no.2
    • /
    • pp.72-81
    • /
    • 2024
  • Purpose: This study aimed to assess the marginal and internal fit of 3-unit monolithic zirconia fixed partial dentures (FPDs) fabricated via computer-aided design and computer-aided manufacturing (CAD/CAM) from solid working casts and removable die system. Materials and Methods: The tooth preparation protocol for a zirconia crown was executed on the mandibular right first premolar and mandibular right first molar, with the creation of a reference cast featuring an absent mandibular right second premolar. The reference cast was duplicated using polyvinyl siloxane impression, from which 20 working casts were fabricated following typical dental laboratory procedures. For comparative analysis, 10 FPDs were produced from a removable die system (RD group) and the remaining 10 FPDs from the solid working casts (S group). The casts were digitized using a dental desktop scanner to establish virtual casts and design the FPDs using CAD. The definitive 3-unit monolithic zirconia FPDs were fabricated via a CAM milling process. The seated FPDs on the reference cast underwent digital evaluation for marginal and internal fit. The Mann-Whitney U test was applied for statistical comparison between the two groups (α = 0.05). Results: The RD group showed significantly higher discrepancies in fit for both premolars and molars compared to the S group (P < 0.05), particularly in terms of marginal and occlusal gaps. Color mapping also highlighted more significant deviations in the RD group, especially in the marginal and occlusal regions. Conclusion: The study found that the discrepancies in marginal and occlusal fits of 3-unit monolithic zirconia FPDs were primarily associated with those fabricated using the removable die system. This indicates the significant impact of the fabrication method on the accuracy of FPDs.