• Title/Summary/Keyword: Desirability Function

Search Result 95, Processing Time 0.024 seconds

Optimal Strategies for Robust Design of Products of Processes

  • Hwang, Inkeuk;Park, Kongjin
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.23 no.56
    • /
    • pp.55-64
    • /
    • 2000
  • There is more than a single quality characteristic and they are often of varying or mixed target types. The purpose of this paper is to develop general strategies for solving the multiple response robust design problem. The desirability function provides an important tool to solve problems that have different types of target since the desirability values all the range between zero and one. Several combinations of arithmetic averages, geometric averages, and standard deviations are used in the various strategies to find the best design point.

  • PDF

A Study on the Selection of Fillet Weld Conditions by Considering the Tack Welds (가접부를 고려한 필릿 용접조건의 선정에 관한 연구)

  • Lee Jun-Yeong;Kim Jae-Yong;Kim Cheol-Hui
    • Proceedings of the KWS Conference
    • /
    • 2006.05a
    • /
    • pp.304-306
    • /
    • 2006
  • Positioning the workpiece accurately and preventing the weld distortion, tack welding is often performed before main welding in the construction of welded structures. The weld bead size of the tack weld is determined according to the workpiece thickness, weld length, weld joint type etc. However, this tack weld deteriorates the final weld bead profile, so that the grinding process is usually adopted for the uniform weld bead profile. In this study, an experimental method for the selection of optimal welding condition was proposed in the fillet weld which was done over the tack weld. This method uses the response surface analysis in which the leg length and the reinforcement height of weld bead were chosen as the quality variables of weld bead profile. The overall desirability function, which was combined desirability function for the two quality variables, was used as the objective function for getting the optimal welding condition. From the result, it was revealed that a uniform weld bead can be obtained by adopting the optimal welding condition which was determined according to the method proposed.

  • PDF

Multiresponse Optimization Through A New Desirability Function Considering Process Parameter Fluctuation (공정변수의 변동을 고려한 만족도 함수를 통한 다중반응표면 최적화)

  • Gwon Jun-Beom;Lee Jong-Seok;Lee Sang-Ho;Jeon Chi-Hyeok;Kim Gwang-Jae
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.39-44
    • /
    • 2004
  • A desirability function approach to a multiresponse problem is proposed considering process parameter fluctuation as well as distance-to-target of response and response variance. The variation of process parameters amplifies the variance of responses. It is called POE (propagation of error), which is defined as the standard deviation of the transmitted variability in the response as a function of process parameters. In order to obtain more robust process parameters, this variability should be considered in the optimization problem. The proposed method is illustrated using a rubber product case.

  • PDF

A Desirability Function-Based Multi-Characteristic Robust Design Optimization Technique (호감도 함수 기반 다특성 강건설계 최적화 기법)

  • Jong Pil Park;Jae Hun Jo;Yoon Eui Nahm
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.4
    • /
    • pp.199-208
    • /
    • 2023
  • Taguchi method is one of the most popular approaches for design optimization such that performance characteristics become robust to uncontrollable noise variables. However, most previous Taguchi method applications have addressed a single-characteristic problem. Problems with multiple characteristics are more common in practice. The multi-criteria decision making(MCDM) problem is to select the optimal one among multiple alternatives by integrating a number of criteria that may conflict with each other. Representative MCDM methods include TOPSIS(Technique for Order of Preference by Similarity to Ideal Solution), GRA(Grey Relational Analysis), PCA(Principal Component Analysis), fuzzy logic system, and so on. Therefore, numerous approaches have been conducted to deal with the multi-characteristic design problem by combining original Taguchi method and MCDM methods. In the MCDM problem, multiple criteria generally have different measurement units, which means that there may be a large difference in the physical value of the criteria and ultimately makes it difficult to integrate the measurements for the criteria. Therefore, the normalization technique is usually utilized to convert different units of criteria into one identical unit. There are four normalization techniques commonly used in MCDM problems, including vector normalization, linear scale transformation(max-min, max, or sum). However, the normalization techniques have several shortcomings and do not adequately incorporate the practical matters. For example, if certain alternative has maximum value of data for certain criterion, this alternative is considered as the solution in original process. However, if the maximum value of data does not satisfy the required degree of fulfillment of designer or customer, the alternative may not be considered as the solution. To solve this problem, this paper employs the desirability function that has been proposed in our previous research. The desirability function uses upper limit and lower limit in normalization process. The threshold points for establishing upper or lower limits let us know what degree of fulfillment of designer or customer is. This paper proposes a new design optimization technique for multi-characteristic design problem by integrating the Taguchi method and our desirability functions. Finally, the proposed technique is able to obtain the optimal solution that is robust to multi-characteristic performances.

A Desirability Function Approach to the Robust Design for Multiple Quality Characteristics (호감도함수 접근법을 이용한 다수품질특성치의 강건설계)

  • Byun, Jai-Hyun;Kim, Kwang-Jae
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.24 no.2
    • /
    • pp.287-296
    • /
    • 1998
  • We often have multiple quality characteristics to develop, improve and optimize industrial processes and products. It is not easy to find optimal control factor setting when there are multiple quality characteristics, since there will be conflict among the selected levels of the control factors for each individual quality characteristic. In this paper we propose a desirability function approach and devise a scheme which gives a systematic way of solving multiple quality characteristic problems. A numerical example is provided.

  • PDF

Design of UV-Molding Process to Maximize the Replication Properties in Microstructures (미세구조체의 전사 특성을 향상시키기 위한 UV 성형 공정의 설계)

  • Kim, Dong-Mook;Kim, Seok-Min;Sohn, So-Young;Kang, Shin-Ill
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.3
    • /
    • pp.450-454
    • /
    • 2003
  • It is important to control the processing conditions to maximize the replication quality of UV-molded microstructure. In the present study, the tip radius anil surface roughness of V-groove structure were measured to quantify the replication quality. UV-curing dose and the applied pressure were experimentally selected as the governing Processing conditions that affect the replication quality of the UV-molded part. Finally. an experimental optimization technique combining central composite design and desirability function approach was used to maximize the replication quality of UV-molded structure.

A Study on Optimal Cutting Conditions of MQL Milling Using Response Surface Analysis (반응표면분석을 이용한 MQL 밀링가공의 최적절삭조건에 관한 연구)

  • Lee, Ji-Hyung;Ko, Tae-Jo;Baek, Dae-Gyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.1
    • /
    • pp.43-50
    • /
    • 2009
  • Semi dry cutting known as MQL (Minimum Quantity Lubrication) machining is widely spreaded into the machining shops nowadays. The objective of this research is to suggest how to derive optimum cutting conditions for the milling process in MQL machining. To reach these goals, a bunch of finish milling experiments was carried out while varying cutting speed, feed rate, oil quantity, depth of cut and so on with MQL. Then, response surface analysis was introduced for the variance analysis and the regression model with the experimental data. Finally, desirability function based on regression model was used to obtain optimal cutting parameters and verification experiment was done.

A Study on Bending Behavior of Tunnel Support (터널지보의 굽힘거동에 관한 연구)

  • Lee, Dong-Woo;Cho, Seok-Swoo;Joo, Won-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.8
    • /
    • pp.896-902
    • /
    • 2007
  • The tunnel stability concerned with safety is very important in coal production process. The tunnel supports made by the GI beam has been used in domestic coal mine tunnels, and the GI beam was connected with another by the fish plate. It is necessary to analysis for the bending problems of the fish plate due to the rock pressure in some domestic mine tunnels. Therefore, this study proposes the application possibility of the optimization algorithms for the problem searching a load condition that bring about bending problem in tunnels. Consequently, in order to investigate the load conditions, desirability function as one of the optimization methods to study the bending behavior of tunnel supports was applied.

Simultaneous Optimization of Multiple quality Characteristics to Robust Design using Desirability Function (로버스트 설계에서 기대함수를 이용한 다특성 동시 최적화 방안)

  • Kwon, Yong-Man;Park, Byung-Jun
    • Journal of Korean Society for Quality Management
    • /
    • v.27 no.2
    • /
    • pp.126-142
    • /
    • 1999
  • Robust design is an approach to reducing performance variation of quality characteristic values in quality engineering. Taguchi has an idea that mean and variation are handled simultaneously to reduce the expected loss in products and processes. Taguchi parameter design has a great deal of advantages but it also has some disadvantages. The various research efforts aimed at developing alternative methods. In the Taguchi parameter design, the product-array approach using orthogonal arrays is mainly used. However, it often requires an excessive number of experiments. An alternative approach, which is called the combined-array approach, was suggested by Welch et. al. ( 1990) and studied by others. In these studies, only single quality characteristic was considered. In this paper we propose how to simultaneously optimize multiple quality characteristics using desirability function when we used the combined-array approach to assign control and noise factors. An example is illustrated to show the difference between the Taguchi's product-array approach and the combined-array approach.

  • PDF

Robust Design using Desirability Function to the Combined-Array with Multiple Quality Characteristics

  • Kwon, Yong-Man;Lee, Jang-Jae
    • Journal of Integrative Natural Science
    • /
    • v.6 no.1
    • /
    • pp.39-45
    • /
    • 2013
  • Robust design is an approach to reducing performance variation of quality characteristic values in quality engineering. Taguchi has an idea that mean and variation are handled simultaneously to reduce the expected loss in products and processes. In the Taguchi parameter design, the product-array approach using orthogonal arrays is mainly used. However, it often requires an excessive number of experiments. An alternative approach, which is called the combined-array approach, was studied. In these studies, only single quality characteristic (or response) was considered. In this paper we propose how to simultaneously optimize for multiple quality characteristics (or multiresponse) using desirability function when we used the combined-array approach to assign control and noise factors.