• Title/Summary/Keyword: Design-point

Search Result 7,905, Processing Time 0.042 seconds

A Study on Joint stiffness Modeling Method and Joint Design Factors for Low Frequency Vibration (차량의 결합부 강성 모델링 기법 및 저진동 영역에 영향을 미치는 인자 연구)

  • Sung, Young-Suk;Kang, Min-Seok;Yim, Hong-Jae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.202-209
    • /
    • 2007
  • Vehicle body frame stiffness affects the dynamic and static characteristics. Vehicle frame structural performance is greatly affected by crossmember and joint design. While the structural characteristics of these joints vary widely, there is no known tool currently in use that quickly predicts joint stiffness early in design cycle. This paper presents the joint design factors affecting on low frequency vibration. The joint factors are joint panel thickness, section property, flange width and weld point space. To study the effect on vehicle low frequency vibration, case studies for these factors are performed. And Sensitivity analysis for section property is performed. The result can present design guide for high-stiffness vehicle.

  • PDF

Deterministic Data Communication Architecture for Safety-Critical Networks in Nuclear Power Plants (원전 안전통신망을 위한 결정론적 데이터 통신 구조)

  • Park, Sung-Woo;Kim, Dong-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.5
    • /
    • pp.199-204
    • /
    • 2006
  • To develop a safety-critical network in nuclear power plants that puts more stringent requirements than the competitive commercial ones do, we establish four design criteria - deterministic communication, explicit separation/isolation structure, reliability, verification & validation. According to those design criteria, the fundamental design elements are chosen as follows - a star topology, point-to-point physical link, connection-oriented link control and fixed allocation access control. After analyzing the design elements, we also build a communication architecture with TDM (Time Division Multiplexing) bus switching scheme. Finally, We develop a DDCNet (Deterministic Data Communication Network) based on the established architecture. The DDCNet is composed of 64 nodes and guarantees the transmission bandwidth of 10Mbps and the delay of 10 msec for each node. It turns out that the DDCNet satisfies the aforementioned design criteria and can be adequately utilized for our purpose.

A Study on Joint Design Factors for Low Vibration Vehicle (저진동 차량을 위한 결합부 인자 연구)

  • Lee, Jae-Woo;Sung, Young-Suk;Kang, Min-Seok;Lee, Sang-Beom;Yim, Hong-Jae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.177-184
    • /
    • 2008
  • Vehicle body frame stiffness affects the dynamic and static characteristics. Vehicle frame structure performance is greatly affected by crossmember and joint design. While the structural characteristic of these joint vary widely, there is no known tool currently in use that quickly predicts joint stiffness early in design cycle. This paper present the joint design factors affecting on low frequency vibration. The joint factors are joint panel thickness, flange width and weld point space. To study the effect on vehicle low frequency vibration, case studies for these factors are performed. The result can present design guide for high-stiffness vehicle.

  • PDF

A Study on the New Paradigm Shift of War Memorial/Museum (전쟁기념(박물)관의 새로운 전시 패러다임에 관한 연구)

  • Kim, Myungshig
    • Korean Institute of Interior Design Journal
    • /
    • v.25 no.4
    • /
    • pp.98-104
    • /
    • 2016
  • The study explores, by carrying out literature review (theoretical pursuit) and case analysis (practical works), the changed point of view on the European war memorial/museum, the revolution of museography and its paradigm, the case analysis of war memorial/museum in the paradigm shift, the new point of view and its role. Through the theoretical thinking and the case analysis, it concludes that the exhibition space of war memorial/museum, which is in the center of material culture, is turning into the venue of societal culture. Ultimately, it aims at indicating the necessity of the paradigm shift, and offering the exhibition design strategy and technique which can better display the objects - remains - of the terrible war and the importance of peace for the old generation and the future generation.

Experimental Test for the Optimum Design of a Rotor Slot in Three Phase Inverter-fed Induction Motor (3상 인버터 구동 유도전동기의 회전자 1 슬롯 최적설계에 관한 실험)

  • Kim, J.W.;Kwon, B.I.;Kim, B.T.;Jo, Y.
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.131-134
    • /
    • 2002
  • The optimum design technology using combind F.E.M and eauivalent circuit is so fast and accurate that it can be applied to the optimum rotor design of an inverter-fed induction motor in high efficiency motor making industry. The optimum characteristics fer a rotor slot model of a 3 phase inverter-134 nduction motor was previously verified by a time-step F.E.M. In this paper, four verification models with the design variables near the optimum point are designed to chech whether the characteristics of a slot model presented is not less than those of the near models. The outputs of whole models are analyzed in a time-step Finite Element Method and compared in the experimental test. The economical and efficient selecting method of design variables fur the computer simulation and experimental test is presented in order to assure the optimum point.

  • PDF

A Low-area and Low-power 512-point Pipelined FFT Design Using Radix-24-23 for OFDM Applications

  • Yu, Jian;Cho, Kyung-Ju
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.5
    • /
    • pp.475-480
    • /
    • 2018
  • In OFDM-based systems, FFT is a critical component since it occupies large area and consumes more power. In this paper, we present a low hardware-cost and low power 512-point pipelined FFT design method for OFDM applications. To reduce the number of twiddle factors and to choose simple design architecture, the radix-$2^4-2^3$ algorithm are exploited. For twiddle factor multiplication, we propose a new canonical signed digit (CSD) complex multiplier design method to minimize the hardware-cost. In hardware implementation with Intel FPGA, the proposed FFT design achieves more than about 28% reduction in gate count and 18% reduction in power consumption compared to the previous approaches.

A study on the Capacity Spectrum for Seismic Performance Evaluation of Bridge (교량의 내진성능 평가를 위한 역량스펙트럼 적용 연구)

  • Park, Yeon-Soo;Lee, Byung-Geun;Kim, Eung-Rok;Suh, Byung-Chul;Park, Sun-Joon;Choi, Sun-Min
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1012-1017
    • /
    • 2008
  • In this study, We examine closely the capacity spectrum method which a kind of displacement-based method evaluated by displacement of structure as an alternative to the load-based analysis method. The displacement-based method can easily review the strength of structure, seismic performance, ductility. Seismic performance by using capacity spectrum method is divided into design response spectrum and capacity spectrum. We can diagram design response spectrum by deciding the design seismic factor depending on performance target, site classification, seismic level, return period as UBC-97. Capacity spectrum is a load-displacement curve obtained by Push-over analysis considering the geometric parameter and the material parameter. We execute the seismic performance evaluation by using the capacity spectrum method to reinforced concrete pier which has been seismic design. As a result, We confirmed that there is a yield point and a ultimate point close by design response spectrum of UBC-97.

  • PDF

Mathematical analysis of girih tiles for mathematics and design integration education (수학과 디자인 융합 교육을 위한 기리 타일의 수학적 탐색)

  • Suh, Bo Euk
    • Education of Primary School Mathematics
    • /
    • v.20 no.3
    • /
    • pp.237-252
    • /
    • 2017
  • The era of the Fourth Industrial Revolution has also influenced the direction of mathematics education. In particular, the convergence capability that recognizes how mathematics can be applied and utilized in various fields is an important point. The purpose of this study is to examine the point of convergence and to develop a fusion program that can be used in the mathematics classroom. Specifically, we analyze the tiles used in ancient Islamic architecture from a mathematical point of view and develop mathematics and multifamily convergence programs based on them. Through the mathematical analysis of the geometric tiling made 500 years earlier than Penrose, I hope that understanding of design, the use of mathematics and the possibility of convergence of other disciplines through mathematics will be widened.

Computational Performance Prediction of Main Coolant Pump for the Integral Reactor SMART (일체형원자로 SMART 냉각재 순환펌프의 전산성능예측)

  • Kim M. H;Lee J. S;Park J. S;Kim J. I;Kim K. K
    • Journal of computational fluids engineering
    • /
    • v.8 no.3
    • /
    • pp.32-40
    • /
    • 2003
  • CFD analyses of the three-dimensional turbulent flow in the impeller and diffuser of an axial flow pump including suction and discharge parts are presented and compared with experimental data. The purpose of the current study is to validate the CFD method for the performance analysis of the main coolant pump for SMART and to investigate the effect of suction and discharge shapes on the pump performance. To generate a performance curve, not only the design point but also the off-design points were computed. The results were compared with available experimental data in terms of head generated. At the design point, the analysis accurately predicts the experimental head value. In the range of the higher flow rates, the results are also in very good agreement with the experimental data, in magnitude but also in terms of slope of variation. For lower flow rates, the results shows that the analysis considering the suction and discharge well describe the typical S-shape performance curve of the axial pump.

Investigation of touchdown point mismatch during installation for catenary risers

  • Huang, Chaojun;Hu, Guanyu;Yin, Fengjie
    • Ocean Systems Engineering
    • /
    • v.8 no.3
    • /
    • pp.313-327
    • /
    • 2018
  • Meeting the touchdown point (TDP) target box is one of the challenges during catenary riser installation, especially for deep water or ultra-deep water riser systems. TDP location mismatch compared to the design can result in variation of riser configuration, additional hang-off misalignment, and extra bending loads going into the hang-off porch. A good understanding of the key installation parameters can help to minimize this mismatch, and ensure that the riser global response meets the design criteria. This paper focuses on investigating the potential factors that may affect the touchdown point location, and addressing the challenges both in the design stage and during installation campaign. Conventionally, the vessel offset and current are the most critical factors which may affect the TDP movement during installation. With the offshore exploration going deeper and deeper in the sea (up to 10,000ft), other sources such as the seabed slope and seabed soil stiffness are playing an important role as well. The impacts of potential sources are quantified through case studies for steel catenary riser (SCR) and lazy wave steel catenary riser (LWSCR) in deep water application. Investigations through both theoretical study and numerical validation are carried out. Furthermore, design recommendations are provided during execution phase for the TDP mismatch condition to ensure the integrity of the riser system.