• Title/Summary/Keyword: Design-based industry structure

Search Result 349, Processing Time 0.021 seconds

Conceptual Clothing Design Process Using Cooperative Learning Strategies: Senior Clothing Design Class

  • Sohn, MyungHee;Kim, Dong-Eun
    • Fashion, Industry and Education
    • /
    • v.14 no.1
    • /
    • pp.59-68
    • /
    • 2016
  • This paper identified the source of inspiration to cooperatively design a fashion collection from US undergraduate clothing design students and addressed how to implement team-based learning strategy to conceptual clothing design in class. Data was collected from the total of 51 students in a senior clothing design course at a large 4-year university in the US. The assigned project for this class was to develop a group collection under a same theme. Each student worked with his/her team member(s) to create an outfit and the entire class worked as a group to create a cohesive collection. The study showed that the sources of inspiration for the themes/concepts came from 11categories: historic era/old Hollywood glamour, shape/line/structure/architectural, fairy tales movies, nature/abstract, circus/mysterious, occasion/place, object, designer/artist, futuristic, culture, and various movies. To implement cooperative learning strategies in the clothing design class, a total of five class presentation/discussion sessions were held for theme/concept decision, fabric decision, design decision, test garment evaluation and design modification, and final products. Throughout the design process, team-based learning strategy promoted students' engagement and participation and inspired their critical thinking skills for making decisions within a team.

Discrete Optimum Design of the Strut Supported Temporary Structures (버팀보지지 가시설구조물의 이산화 최적설계)

  • Park, Soon-Eung;Park, Moon-Ho;Kim, Jin-Kyu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.11 no.3
    • /
    • pp.127-134
    • /
    • 2008
  • This study is to develop the structure analysis and optimization algorithm of the strut supported temporary structure for underground constructions. Developed algorithm performs the analysis and the optimization of each strut, wale, and H pile of temporary structures separately. The design variables of nonlinear optimization consist of the cross-sections of temporary structures such as strut, wale, and H pile and the solution of the nonlinear programming is searched using for the method of successive unconstranint minimization technique. The weight of the structure is used for the object function of nonlinear programming. the constraints are derived from the specification of the temporary structures as compressive axial, bending, shear, composite stress and serviceability. The structural analysis is performed based on the elastoplastic beam theory. This developed program can be used to evaluate the applicability, convergence, and effectiveness of the temporary structures.

  • PDF

Development of a Production and Information Management System Based on MRP for Footwear Industry (MRP에 의한 종합 신발 생산 정보관리 시스템 개발)

  • 류영근
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.17 no.32
    • /
    • pp.81-94
    • /
    • 1994
  • The objective of this case study is to describe ins and outs of a production and information management system developed for footwear industry (based on MRP system). First, basic structure of the total system, configuration of sub-system modules, specification and configuration of software/hardware used in this system are presented. Second, design of the total system flow, configuration of code system, file description used in this system are explained. Third, function of software modules and principal algorithms and basic data structuring technigues are discussed. Finally, inplementation plan and output reports are presented.

  • PDF

Comparative Analysis of Competitiveness in the Steel Distribution Industry between Korea and Japan

  • Lee, Jae-Sung
    • Journal of Distribution Science
    • /
    • v.12 no.3
    • /
    • pp.25-32
    • /
    • 2014
  • Purpose - This study reviews changes in the steel export-import structure between Korea and Japan using a trade related index; it focuses on analyzing comparative advantage based on time-series analysis statistics data using the trade intensity index (TII), revealed comparative advantage index (RCA), and trade specialization index (TSI). Research design, data, and methodology - In terms of their economic phase, Korea and Japan have a mutually complementary character. Therefore, this study aims to understand each country's trade structure to strengthen Korea-Japan economic cooperation, examine trade drawbacks, analyze factors that affect trade, and identify ways to improve and expand trade. Results - The results indicate immense potential for mutual cooperation and complementariness, which will yield guaranteed adequate profits comparable to those of any regional economic integrated community. Conclusion - From our viewpoint, Northeast economic cooperation can facilitate industry technological cooperation with Japanese partners in the prevailing environment that is characterized by increasing competition among industries and the need to secure stable resource supplies as well as the expansion of the export market and diversification, which can have significant positive implications.

Building Code Typology and Application for Open BIM based Code Checking (개방형BIM기반의 건축법규검토를 위한 법규유형화 및 적용방안)

  • Kim, Inhan;Kim, Yongha;Choi, Jungsik
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.3
    • /
    • pp.224-235
    • /
    • 2014
  • Recently, Productivity of the construction industry has been decreasing than other industries. Because of this, BIM is being spread in the construction industry. However, quality criteria for BIM data is insufficient. Regulation information is an important factor for initial architectural design evaluations. However, building code and related regulation are numerous. National building code structure in Korea is much more complex than other countries. The purpose of this study is to suggest the typology method of building code and apply to real regulations. To achieve this purpose, the authors have extracted required information to from original regulation for code checking and suggested mapping methods between extracted information and information of IFC scheme. In addition, the authors have represented EXPRESS-G diagram for extracting information from IFC scheme and suggested code checking method through stair case. Output of this study can be used as a base line data for automated code checking system based on open BIM. Automated code checking system will be utilized in architectural design evaluations and supported to increase design quality. It can be used to mount in SEUMTER that is the construction administration system of Ministry of Land, Infrastructure and Transport (MOLIT).

Development of Pre-Specification for BIM-based Automated Building Code Checking (BIM 기반 건축법규 자동검토를 위한 사전정의서 개발)

  • Kim, Inhan;Jang, Jaemoon;Choi, Jungsik
    • Korean Journal of Computational Design and Engineering
    • /
    • v.21 no.1
    • /
    • pp.31-41
    • /
    • 2016
  • Building Information Modeling (BIM) has been adopted in variety domain of construction industry. In this circumstances, interest of BIM model quality has been increased. In many countries, automated building code checking system by Industry Foundation Classes (IFC) has been developed and studied to use web based building permission systems. IFC is international standard of BIM format. However, the data structure of IFC does not include all of objects and properties about national building codes. In this paper, we developed the information specification between IFC data structure and national building code to increase interoperability. First, we drew the criteria from literature review to analyze the building code. And then, we analyzed building code and sorted objects and properties for automated building code checking. After that we made mapping table between the sorted data and IFC specification. Using the mapping table, we developed pre-specification about building codes information that does not exist in IFC specification. And the defined information can be used to develop the BIM modeling guide and national building permission system. The pre-specification support increasing the interoperability between user and automated building code checking system. Increasing thee interoperability makes improvement accuracy and reliability about result of automated building code checking.

Options for sustainable earthquake-resistant design of concrete and steel buildings

  • Gilmore, Amador Teran
    • Earthquakes and Structures
    • /
    • v.3 no.6
    • /
    • pp.783-804
    • /
    • 2012
  • Because of its large contribution to the environmental instability of the planet, the building industry will soon be subjected to a worldwide scrutiny. As a consequence, all professionals involved in the building industry will need to create a professional media in which their daily work adequately solves the technical issues involved in the conception, design and construction of concrete and steel buildings, and simultaneously convey care for the environment. This paper discusses, from the point of view of a structural engineer involved in earthquake-resistant design, some of the measures that can be taken to promote the consolidation of a building industry that is capable of actively contributing to the sustainable development of the world.

Study on the Textile Structural Design using SLS 3D Printing Technology -Focused on Design of Flexible Woven Fabric Structure- (SLS 방식의 3D 프린팅 기술을 활용한 직물구조적인 디자인설계 연구 -유연성 있는 직조구조 직물설계를 중심으로-)

  • Song, HaYoung
    • Journal of Fashion Business
    • /
    • v.23 no.3
    • /
    • pp.67-84
    • /
    • 2019
  • Since the early 2000s, various fashion design products that use 3D printing technology have constantly been introduced to the fashion industry. However, given the nature of 3D printing technology, the flexible characteristics of material of textile fabrics is yet to be achieved. The aim of this study is to develop the optimal design conditions for production of flexible and elastic 3D printing fabric structure based on plain weave, which is the basic structure in fabric weaving using SLS 3D printing technology. As a the result this study aims to utilize appropriate design conditions as basic data for future study of flexible fashion product design such as textile material. Weaving structural design using 3D printing is based on the basic plain weave, and the warp & weft thickness of 4mm, 3mm, 2mm, 1.5mm, 1mm, and 0.7mm as expressed in Rhino 6.0 CAD software program for making a 3D model of size $1800mm{\times}180mm$ each. The completed 3D digital design work was then applied to the EOS SLS Machine through Maker ware, a program for 3D printer output, using polyamide 12 material which has a rigid durability strength, and the final results obtained through bending flexibility tests. In conclusion, when designing the fabric structure design in 3D printing using SLS method through application of polyamide 12 material, the thickness of 1 mm presented the optimal condition in order to design a durable digital textile structure with flexibility and elasticity of the 3D printing result.

A Proposal of the Usage Metering Functions on Cloud Computing-Based Building Information Modeling (BIM) and the Law for the Open BIM Ecosystem (열린 BIM 생태계 조성을 위한 클라우드 컴퓨팅 기반 BIM 서비스 환경의 사용량 측정 기술 및 법 규정 제안)

  • Kim, Byungkon;Kim, Jongsung
    • Journal of KIBIM
    • /
    • v.6 no.3
    • /
    • pp.49-56
    • /
    • 2016
  • As project opportunities for the Architecture, Engineering and Construction (AEC) industry have grown more complex and larger, the utilization of Building Information Modeling (BIM) technologies for three-dimensional (3D) design and simulation practices has been increasing significantly; the typical applications of the BIM technologies include clash detection and design alternative based on 3D planning, which have been expanded over to the technology of construction management in the AEC industry for virtual design and construction. As for now, commercial BIM software has been operated under a single-user environment, which is why initial costs for its introduction are very high. Cloud computing, one of the most promising next-generation Internet technologies, enables simple Internet devices to use services and resources provided with BIM software. Recently in Korea, studies to link between BIM and cloud computing technologies have been directed toward saving costs to build BIM-related infrastructure, and providing various BIM services for small- and medium-sized enterprises (SMEs). This study addressed development of the usage metering functions of BIM software under cloud computing architecture in order to archive and use BIM data and create an optimal revenue structure so that the BIM services may grow spontaneously, considering a demand for cloud resources. For the reason, we surveyed relevant cases, and then analyzed needs and requirements from AEC industry. Based on the relevant cases, customizing for cloud BIM and design for the development was performed. We also surveyed any related-law to support cloud computing-based BIM service. Finally, we proposed herein how to optimally design and develop the usage metering functions of cloud BIM software.

Vibration control of offshore wind turbine using RSM and PSO-optimized Stockbridge damper under the earthquakes

  • Islam, Mohammad S.;Do, Jeongyun;Kim, Dookie
    • Smart Structures and Systems
    • /
    • v.21 no.2
    • /
    • pp.207-223
    • /
    • 2018
  • In this inquisition, a passive damper namely Stockbridge Damper (SBD) has been introduced to the field of vibration control of Offshore Wind Turbine (OWT) to reduce the earthquake excitations. The dynamic responses of the structure have been analyzed for three recorded earthquakes and the responses have been assessed. To find an optimum SBD, the parameters of damper have been optimized using Response Surface Methodology (RSM) based on Box-Behnken Design (BBD) and Particle Swarm Optimization (PSO). The influence of the design variables of SBD such as the diameter of messenger cable, the length of messenger cable and logarithmic decrement of the damping has been investigated through response variables such as maximum displacement, RMS displacement and frequency amplitude of structure under an artificially generated white noise. After that, the structure with optimized and non-optimized damper has been analyzed with under the same earthquakes. Moreover, the comparative results show that the structure with optimized damper is 11.78%, 18.71%, 11.6% and 7.77%, 7.01%, 10.23% more effective than the structure with non-optimized damper with respect to the displacement and frequency response under the earthquakes. The results show that the SBD can obviously affect the characteristics of the vibration of the OWT and RSM based on BBD and PSO approach can provide an optimum damper.