• Title/Summary/Keyword: Design wind speed

Search Result 657, Processing Time 0.022 seconds

A Study on Fluctuating Wind Profile in CFD Simulation for Evaluating Wind Load (CFD 시뮬레이션을 이용한 풍하중 산정 시 변동풍속 프로파일에 관한 연구)

  • Jeon, Doo-Jin;Han, Sang-Eul
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.1
    • /
    • pp.51-59
    • /
    • 2021
  • In this paper, the effect of the turbulence intensity in across-wind direction on the wind load in CFD(Computational fluid dynamics) simulation was analyzed. 'Ansys fluent' software was used for CFD simulation. And the fluctuating wind speed applied to the simulation was generated according to Korean Design Standard and Von Karman wind turbulence model. The turbulence intensity in across-wind direction for simulation was applied from 0 to 100% of the turbulence intensity in along-wind direction. The analysis results showed that the turbulence intensity in across-wind direction had a particularly great effect on the wind load in across-wind direction.

A Study of 50kW Wind Turbine by Using ANSYS Program (ANSYS 프로그램을 이용한 50kW급 풍력터빈에 관한 연구)

  • Lee, Dal-Ho;Park, Jung-Cheul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.3
    • /
    • pp.198-204
    • /
    • 2022
  • In this paper, the 5kW and 50kW vertical axis wind turbines were studied using the ANSYS flow analysis simulation program. The 5 kW vertical shaft wind turbine has 30 units of the number of main blades and sub-blades and the electrical characteristics were analyzed by changing the tip speed ratio (TSR) from 0.2 to 06. A 50kW vertical axis wind turbine was designed based on the electrical characteristics of a 5kW vertical axis wind turbine. When the tip speed ratio was 0.5, the 5 kW wind power generation showed the maximum output of 9.5 kW and the efficiency of 0.28. The calculation of the power current(Ip) and the power voltage(Ep) show that, as the tip speed ratio increases, the power current(Ip) decreases and the power voltage(Ep) increases. And even if the tip speed ratio was changed, 5kW wind power generation was measured for output of 5 kW or higher. When the tip speed ratio was changed from 0.3 to 0.6, 50 kW wind power generation was output more than 50 kW. When the tip speed ratio of 50kW wind power generation was 0.4, the output was 58.37 [kW] and the efficiency was 0.318, and it was confirmed that the proposed 50kW wind power generation satisfies the design conditions.

Reducing Effect of Wind-induced Vibration on Rectangular Model of Super-Highrise Building with Length of Corners Cutting (초고층 건물의 각주형 단면에 대한 공력 불안정 진동 및 풍진 저감 효과에 관한 실험적 연구)

  • Cheong, Yung-Bea
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.3
    • /
    • pp.301-311
    • /
    • 2001
  • For a rectangular-highrise building with aspect ratio about six, the resonant wind speed of wind-induced vibration or galloping start wing speed can be within the design wind speed. The wind-induced vibration and galloping of highrise building with aspect ratio $H/\sqrt{DB}=6$, side ratio D/B=1 to 2 at intervals of 1/4 D/B were investigated in smooth flow. For the reducing effect of wind-induced vibration of highrise building, rectangular-highrise building with corners cutting about side ratio D/B=2 were investigated. Experimental results show that in the smooth flow non corners-cutting cases have tendency of increasing wind-induced vibration and galloping vibration then corner-cutting section. Therefore, the wind-induced vibrations on rectangular-highrise buildings were reduced effectively by using corner cut method.

  • PDF

Design of a 2MW Blade for Wind Turbine and Uni-Directional Fluid Structure Interaction Simulation (2 MW급 풍력터빈 블레이드 설계 및 단방향 유체-구조연성해석)

  • Kim, Bum-Suk;Lee, Kang-Su;Kim, Mann-Eung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.12
    • /
    • pp.1007-1013
    • /
    • 2009
  • The purposes of this study are to evaluate the power performance through CFD analysis and structural integrity through uni-directional FSI analysis in aerodynamic design and structure design of wind turbine blade. The blade was designed to generate the power of 2MW under the rated wind speed of 11 m/s, consisting of NACA 6 series, DU series and FFA series airfoil. The inside section of the blade was designed into D-spar structure and circular stiffener was placed to reinforce the structural strength in the part of hub. CFD analysis with the application of transitional turbulence model was performed to evaluate the power performance of blade according to the change of TSR and 2.024MW resulted under the condition of rated wind speed. TSR of 9 produced the maximum power coefficient and in this case, Cp was 0.494. This study applied uni-directional FSI analysis for more precise evaluation of structural integrity of blade, and the results of fiber failure, inter fiber failure and eigenvalue buckling analysis were evaluated, respectively. For the evaluation, Puck's failure criteria was applied and the result showed that fiber failure and inter fiber failure did not occur under every possible condition of the analysis. As a result, power performance and structural integrity of 2 MW blade designed in this study turned out to satisfy the initial design goals.

Optimal design of a wind turbine supporting system accounting for soil-structure interaction

  • Ali I. Karakas;Ayse T. Daloglua
    • Structural Engineering and Mechanics
    • /
    • v.88 no.3
    • /
    • pp.273-285
    • /
    • 2023
  • This study examines how the interaction between soil and a wind turbine's supporting system affects the optimal design. The supporting system resting on an elastic soil foundation consists of a steel conical tower and a concrete circular raft foundation, and it is subjected to wind loads. The material cost of the supporting system is aimed to be minimized employing various metaheuristic optimization algorithms including teaching-learning based optimization (TLBO). To include the influence of the soil in the optimization process, modified Vlasov and Gazetas elastic soil models are integrated into the optimization algorithms using the application programing interface (API) feature of the structural analysis program providing two-way data flow. As far as the optimal designs are considered, the best minimum cost design is achieved for the TLBO algorithm, and the modified Vlasov model makes the design economical compared with the simple Gazetas and infinitely rigid soil models. Especially, the optimum design dimensions of the raft foundation extremely reduce when the Vlasov realistic soil reactions are included in the optimum analysis. Additionally, as the designated design wind speed is decreased, the beneficial impact of soil interaction on the optimum material cost diminishes.

Resonance Analysis According to Initial Tower Design for Floating Offshore Wind Turbine (부유식 해상풍력발전기 타워의 초기 형상에 따른 공진 해석)

  • Kim, Junbae;Shin, Hyunkyoung
    • Journal of Wind Energy
    • /
    • v.9 no.4
    • /
    • pp.57-64
    • /
    • 2018
  • To maximize power generation and reduce the construction cost of a commercial utility-grade wind turbine, the size of the wind turbine should be large. The initial design of the 12 MW University of Ulsan(UOU) Floating Offshore Wind Turbine(FOWT) was carried out based on the 5 MW National Renewable Energy Laboratory(NREL) offshore wind turbine model. The existing 5 MW NREL offshore wind turbines have been expanded to 12 MW UOU FOWT using the geometric law of similarity and then redesigned for each factor. The resonance of the tower is the most important dynamic responses of a wind turbine, and it should be designed by avoiding resonance due to cyclic load during turbine operations. The natural frequency of the tower needs to avoid being within the frequency range corresponding to the rotational speed of the blades, 1P, and the blade passing frequency, 3P. To avoid resonance, vibration can be reduced by modifying the stiffness or mass. The direct expansion of the 5 MW wind turbine support structure caused a resonance problem with the tower of the 12 MW FOWT and the tower length and diameter was adjusted to avoid a match of the first natural frequency and 3P excitation of the tower.

Exploring market uncertainty in early ship design

  • Zwaginga, Jesper;Stroo, Ko;Kana, Austin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.352-366
    • /
    • 2021
  • To decrease Europe's harmful emissions, the European Union aims to substantially increase its offshore wind energy capacity. To further develop offshore wind energy, investment in ever-larger construction vessels is necessary. However, this market is characterised by seemingly unpredictable growth of market demand, turbine capacity and distance from shore. Currently it is difficult to deal with such market uncertainty within the ship design process. This research aims to develop a method that is able to deal with market uncertainty in early ship design by increasing knowledge when design freedom is still high. The method uses uncertainty modelling prior to the requirement definition stage by performing global research into the market, and during the concept design stage by iteratively co-evolving the vessel design and business case in parallel. The method consists of three parts; simulating an expected market from data, modelling multiple vessel designs, and an uncertainty model that evaluates the performance of the vessels in the market. The case study into offshore wind foundation installation vessels showed that the method can provide valuable insight into the effect of ship parameters like main dimensions, crane size and ship speed on the performance in an uncertain market. These results were used to create a value robust design, which is capable of handling uncertainty without changes to the vessel. The developed method thus provides a way to deal with market uncertainty in the early ship design process.

Vibration Characteristics of the Tower Structure of a 750kW Wind Turbine Generator (750kW 풍력발전기 타워 구조의 진동 특성)

  • Kim, Seokhyun;Nam, Y.S.;Eun, Sungyoung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.2 s.95
    • /
    • pp.219-224
    • /
    • 2005
  • Vibration response of the tower structure of a 750kW wind turbine (W/T) generator is investigated by measurement and analysis. Acceleration response of the W/T tower under various operation condition is monitored in real time by the vibration monitoring system using LabVIEW. Resonance state of the tower structure is diagnosed in the operating speed range. Resonance frequency range of the test model is investigated with the wind speed data of the test site. To predict the tower resonance frequency, tower is modeled as an equivalent beam with a lumped mass and Rayleigh energy method is applied. Calculated tower bending frequency is in good agreement with the measured value and the result shows that the simplified model can be used in the design stage of the W/T tower.

A Study on the Wind Turbine Blade Optimization and Pitch Control Using the Hybrid Genetic Algorithm (혼합형 유전 알고리즘을 이용한 풍력발전기용 블레이드 최적설계 및 피치제어에 관한 연구)

  • Kang, Shin-Jae;Kim, Ki-Wan;Ryu, Ki-Wahn;Song, Ki-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.6
    • /
    • pp.7-13
    • /
    • 2002
  • This paper introduced a new hybrid genetic algorithm, verified its performance, and applied it to the optimization of blade design and pitch control for 30kW pitch-controlled variable-speed horizontal-axis wind turbine system to determine the optimum blade chord and twist distributions that maximize the energy production for a given Weibull wind distribution and the optimum blade pitch angles that maintain constant power output.

Feasibility Study for Practical Application of Aerospace Derivative Technology - Vertical Wind Tunnel (항공우주 파생기술 실용화를 위한 타당성 연구 - 수직 풍동)

  • Kwon, Kijung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.2
    • /
    • pp.148-153
    • /
    • 2017
  • KARI LSWT(Korea Aerospace Research Institute Low Speed Wind Tunnel) has accumulated close to 20 years of know-how since its completion in 1998 and is trying to commercialize related technologies. As part of this research, KARI LSWT is studying design of vertical wind tunnel equipped with a skydiving simulator. KARI carries out concept design together with high performance/low noise design and is to transfer the related technology to a domestic producible company to increase commercialization possibility. In addition, KARI is seeking cooperation with related organizations in China to enter Chinese market.