• 제목/요약/키워드: Design structure

검색결과 17,793건 처리시간 0.046초

학교체육관의 구조계획을 위한 구조시스템 구성요소의 변화와 건축특성의 영향분석 (An Analysis on the Relationship of Architectural Features and Composition Elements for Structure Planning in School Gymnasium)

  • 이주나
    • 교육시설 논문지
    • /
    • 제26권5호
    • /
    • pp.25-36
    • /
    • 2019
  • School gymnasium is a multi-purpose large space building for various events and physical education activities, and is a facility that requires an approach to the desirable structural design, besides mechanical problems of structure against loads. For the integrated structure design concerning the architectural features, the major considerations of gymnasium planning that are the internal and external shape of the gymnasium, the space scale with structure members, the structural efficiency by members weight reduction and openness of the gymnasium space will have to take into account in the structural planning. From this point of view, the several cases of the school gymnasium were investigated and the parametric analyses were performed to the models using the various structural system. The parameters were the composition elements of structure system that are profile of structure, rigidity of member, connection and anchorage and stability. At the result, It was presented that the profile of structure member was the most influential factor to structural efficiency and the effect of the form and space of gymnasium. Also the design informations of structure design having the various feature of form and space were presented for the initial gymnasium planning.

공작기계 구조물 설계를 위한 통합설계 시스템 개발 (Development of Integrated Design System for Structural Design of Machine Tools)

  • 박면웅;손영태;조성원
    • 한국정밀공학회지
    • /
    • 제20권1호
    • /
    • pp.229-239
    • /
    • 2003
  • The design process of machine tools is regarded as a sequential, discrete, and inefficient works as it requires various kinds of design tools and many working hours. This paper describes an integrated design system embedding a design methodology that can support efficiently and systematically the conceptual structural design of machine tools. The system is a knowledge-based design system and has four machine-tool-specific functional modules including configuration design, configuration analysis, structure design, and structural analysis support module. Through the configuration design and analysis module, a machine configuration appropriate for design requirements is selected, and then the arrangement of ribs fer each structural part is decided in the structure design module. Also, the structural analysis support module is used to evaluate design result by utilizing structural analysis software, ANSYS. The system is applied to design of a tapping machine, and shows that the machine structure can be designed fast and conveniently by processing each design step interactively.

Slot 구조를 이용한 920MHz 소형 RFID 리더 안테나 다구찌설계 연구 (The design of a 920MHz compact RFID reader antenna of slot structure using the Taguchi's Method)

  • 권소현;고재형;김형석
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 한국정보통신설비학회 2009년도 정보통신설비 학술대회
    • /
    • pp.289-292
    • /
    • 2009
  • In this paper, an optimum design center frequency proposes portable RFID reader antenna that is 920MHz frequency using the Taguchi's Method. Proposed antenna is cut corner of opposite angle and it's structure that have slots in four sides microstrip patch of a perfect square shape. This slot structure can miniaturize microstrip patch antenna and confirmed through an experiment that size of antenna about 18% decreases than structure that slot does not exist. Because compact antenna that have structure of slot changes according to complex design variables, analysis and experimental design for minimization of experiment number of times are required for optimum antenna design. In this research, designed antenna that have optimum structure when introduce and designs table of orthogonal arrays of the Taguchi's Method been experimental design that can minimize analysis and experiment number of times, achieve responsiveness analysis of main elements and analyzes the effect and minimizes design repeat with analysis result. Presented experiment result about antenna special quality that permittivity is 4.4 and manufactures to board of Epoxy 3.2T.

  • PDF

옹벽 구조물을 위한 설계 자동화 통합 시스템 개발 (Development of an Integrated Design Automation System for Retaining Wall Structures)

  • 변윤주;김현기;김도;이민우
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.294-299
    • /
    • 2008
  • Nowadays there are numerous factors to design the structure even for simple one, but many parts of the work are similar to the existing or repeated simply. In this case, design of the structure is unnecessarily needed lots of effort and time. To solve difficulties of design, an integrated design automation system for retaining wall structures that widely used is developed. The automation system consists of following items, 1) XML data structure between modules, 2) CAD visualization system to provide drawing sheets, 3) excel solution to provide structural design sheets and bills of quantity, 4) design logic to analysis and calculate behaviors of structure, and 5) GUI to represent data and results for the program.

  • PDF

다두 Router Machine 구조물의 경량 고강성화 최적설계 (Structural Analysis and Dynamic Design Optimization of a High Speed Multi-head Router Machine)

  • 최영휴;장성현;하종식;조용주
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.902-907
    • /
    • 2004
  • In this paper, a multi-step optimization using a G.A. (Genetic Algorithm) with variable penalty function is introduced to the structural design optimization of a 5-head route machine. Our design procedure consist of two design optimization stage. The first stage of the design optimization is static design optimization. The following stage is dynamic design optimization stage. In the static optimization stage, the static compliance and weight of the structure are minimized simultaneously under some dimensional constraints and deflection limits. On the other hand, the dynamic compliance and the weight of the machine structure are minimized simultaneously in the dynamic design optimization stage. As the results, dynamic compliance of the 5-head router machine was decreased by about 37% and the weight of the structure was decreased by 4.48% respectively compared with the simplified structure model.

  • PDF

인테리어 디자인에서 커뮤니케이션 관계구조와 표현방법에 관한 연구 - 실무 디자인 프로세스 커뮤니케이션 중심으로 - (A Study on the Communication Relationship Structure and Expression Methods in Interior Design - Focused on the Practical design process of communication -)

  • 서지혜;홍일태
    • 한국실내디자인학회논문집
    • /
    • 제22권5호
    • /
    • pp.199-206
    • /
    • 2013
  • Design is one of diverse human communication activities. Development of technologies has led to execution of more active design communication functions, stirring social and cultural changes. The concept of design communication has become stronger by overcoming the limitations of verbal communication and expanding the methods of communication. These social changes are highlighted In the design of modern space. Even though communication in interior design activities is so important, detailed studies on communication of each entity are still very insufficient. Design communication refers to tools and activities for overall communications in the design process. In design activities, relevant communication is indispensible. Therefore, studies on practical communication methods are essential for accurate communication of content that has to be shared in the results or in the process of obtaining the results, rather than only focusing on the future techniques and functions of design. In other words, improving the efficiency of interior design communication requires establishing a communication relationship structure of each entity, which calls for proper expression methods depending on each entity. Therefore, this study is aimed at exploring efficient expression methods in line with the relationship structure of each entity in the interior design process.

개폐식 대공간 구조물을 위한 스마트 TMD 설계기법 개발 (Design Method Development of Smart TMD for Retractable-Roof Spatial Structure)

  • 김현수;강주원
    • 한국공간구조학회논문집
    • /
    • 제17권3호
    • /
    • pp.107-115
    • /
    • 2017
  • In this paper, a structural design method of a smart tuned mass damper (TMD) for a retractable-roof spatial structure under earthquake excitation was proposed. For this purpose, a retractable-roof spatial structure was simplified to a single degree of freedom (SDOF) model. Dynamic characteristics of a retractable-roof spatial structure is changed based on opened or closed roof condition. This condition was considered in the numerical simulation. A magnetorheological (MR) damper was used to compose a smart TMD and a displacement based ground-hook control algorithm was used to control the smart TMD. The control effectiveness of a smart TMD under harmonic and earthquake excitation were evaluated in comparison with a conventional passive TMD. The vibration control robustness of a smart TMD and a passive TMD were compared along with the variation of natural period of a simplified structure. Dynamic responses of a smart TMD and passive TMD under resonant harmonic excitation and earthquake load were compared by varying mass ratio of TMD to total mass of the simplified structure. The design procedure proposed in this study is expected to be used for preliminary design of a smart TMD for a retractable-roof spatial structure.

가변 벌점함수 유전알고리즘을 이용한 금형가공센터 고속이송체 구조물의 최적설계 (Design Optimization of a Rapid Moving Body Structure for a Machining Center Using G.A. with Variable Penalty Function)

  • 최영휴;차상민;김태형;박보선;최원선
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 춘계학술대회 논문집
    • /
    • pp.504-509
    • /
    • 2003
  • In this paper, a multi-step optimization using a G.A.(Genetic Algorithm) with variable penalty function is introduced to the structural design optimization of a high speed machining center. The design problem, in this case, is to find out the best cross-section shapes and dimensions of structural members which minimize the static compliance, the dynamic compliance, and the weight of the machine structure simultaneously. The first step is the cross-section shape optimization, in which only the section members are selected to survive whose cross-section area have above a critical value. The second step is a static design optimization, in which the static compliance and the weight of the machine structure are minimized under some dimensional constraints and deflection limits. The third step is a dynamic design optimization, where the dynamic compliance and the structure weight are minimized under the same constraints as those of the second step. The proposed design optimization method was successful applied to the machining center structural design optimization. As a result, static and dynamic compliances were reduced to 16% and 53% respectively from the initial design, while the weight of the structure are also reduced slightly.

  • PDF