• Title/Summary/Keyword: Design of Validation Experiment

Search Result 95, Processing Time 0.019 seconds

Flow blockage analysis for fuel assembly in a lead-based fast reactor

  • Wang, Chenglong;Wu, Di;Gui, Minyang;Cai, Rong;Zhu, Dahuan;Zhang, Dalin;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3217-3228
    • /
    • 2021
  • Flow blockage of the fuel assembly in the lead-based fast reactor (LFR) may produce critical local spots, which will result in cladding failure and threaten reactor safety. In this study, the flow blockage characteristics were analyzed with the sub-channel analysis method, and the circumferentially-varied method was employed for considering the non-uniform distribution of circumferential temperature. The developed sub-channel analysis code SACOS-PB was validated by a heat transfer experiment in a blocked 19-rod bundle cooled by lead-bismuth eutectic. The deviations between the predicted coolant temperature and experimental values are within ±5%, including small and large flow blockage scenarios. And the temperature distributions of the fuel rod could be better simulated by the circumferentially-varied method for the small blockage scenario. Based on the validated code, the analysis of blockage characteristics was conducted. It could be seen from the temperature and flow distributions that a large blockage accident is more destructive compared with a small one. The sensitivity analysis shows that the closer the blockage location is to the exit, the more dangerous the accident is. Similarly, a larger blockage length will lead to a more serious case. And a higher exit temperature will be generated resulting from a higher peak coolant temperature of the blocked region. This work could provide a reference for the future design and development of the LFR.

Stiffness Analysis of External Fixation System with System Configuration Parameters (시스템 구성 인자를 고려한 외고정장치 시스템의 강성 해석)

  • Kim Yoon Hyuk;Lee Hyun Keun
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.6
    • /
    • pp.531-536
    • /
    • 2004
  • In fracture treatment with external fixators, the inter-fragmentary movements at the fracture site affect the fracture healing process, and these movements are highly related to the stiffness of external fixation systems. Therefore, in order to provide the optimal fracture healing at the fracture site, it is essential to understand the relationship between the stiffness and the system configurations in external fixation system. In this study we investigated the influences of system configuration parameters on the stiffness in the finite element analysis of an external fixation system of a long bone. The system alignment, the geometric and the material non-linearity of the pin, the joint stiffness and the callus formation were considered in the finite element model. In the first, the system stiffness of the developed finite element model was compared with the experiment data for model validation. The consideration of the joint stiffness and nonlinearity of the model improved the system stiffness results. The joint stiffness, the non-alignment of the system decreased the system stiffness while the callus formation increased the system stiffness. The present results provided the biomechanical basis of rational guidelines for design improvements of external fixators and pre-op. planning to maximize the system stiffness in fracture surgery.

The Effect of Donations Feedback and Donation Awareness to Donation Continuity Intention (기부금 사용 내역 피드백과 기부인식이 기부지속에 미치는 영향)

  • Suh, Munshik;Oh, Daeyang
    • Journal of Digital Convergence
    • /
    • v.16 no.3
    • /
    • pp.129-143
    • /
    • 2018
  • The purpose of this study was to examine the effect of donation expenditure details and the shift in awareness as a result of disclosure of donation expenditure details in order to promote constant donation by nonprofit organizations in the course of marketing activities. The first experiment was configured through $2{\times}2$ intergroup element design based on 2(feedback on donation expenditure details: available vs. unavailable) ${\times}$ 2(donation awareness: expenditure vs. exchange), and furthermore, MANOVA was performed. The results showed that the satisfaction with donation was higher when the donation expenditure details were disclosed(M=5.125, SD=0.437) and that the relation maintenance intention was higher(p<0.01) when the donation expenditure details were disclosed M=5.328, SD=0.459). In addition, the main effect was validated by using the bootstrapping method. The results of overall model validation showed that satisfaction & trust(=0.843, p<0.01) and satisfaction(=0.267, p<0.01) and trust(=0.691, p<0.01) had a positive(+) relationship. Based on aforesaid results, donors are expected to have greater trust if nonprofit organizations make effort to ensure transparent and detailed disclosure of information on expenditure of donations made by donors. Succeeding studies would need to investigate the effect that might vary depending on the type of feedback methods, etc.

Identification of the Sectional Distribution of Sound Source in a Wide Duct (넓은 덕트 단면내의 음원 분포 규명)

  • Heo, Yong-Ho;Ih, Jeong-Guon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.2
    • /
    • pp.87-93
    • /
    • 2014
  • If one identifies the detailed distribution of pressure and axial velocity at a source plane, the position and strength of major noise sources can be known, and the propagation characteristics in axial direction can be well understood to be used for the low noise design. Conventional techniques are usually limited in considering the constant source characteristics specified on the whole source surface; then, the source activity cannot be known in detail. In this work, a method to estimate the pressure and velocity field distribution on the source surface with high spatial resolution is studied. The matrix formulation including the evanescent modes is given, and the nearfield measurement method is proposed. Validation experiment is conducted on a wide duct system, at which a part of the source plane is excited by an acoustic driver in the absence of airflow. Increasing the number of evanescent modes, the prediction of pressure spectrum becomes further precise, and it has less than -25 dB error with 26 converged evanescent modes within the Helmholtz number range of interest. By using the converged modal amplitudes, the source parameter distribution is restored, and the position of the driver is clearly identified at kR = 1. By applying the regularization technique to the restored result, the unphysical minor peaks at the source plane can be effectively suppressed with the filtering of the over-estimated pure radial modes.

Detection of Clavibacter michiganensis subsp. michiganensis Assisted by Micro-Raman Spectroscopy under Laboratory Conditions

  • Perez, Moises Roberto Vallejo;Contreras, Hugo Ricardo Navarro;Herrera, Jesus A. Sosa;Avila, Jose Pablo Lara;Tobias, Hugo Magdaleno Ramirez;Martinez, Fernando Diaz-Barriga;Ramirez, Rogelio Flores;Vazquez, Angel Gabriel Rodriguez
    • The Plant Pathology Journal
    • /
    • v.34 no.5
    • /
    • pp.381-392
    • /
    • 2018
  • Clavibacter michiganensis subsp. michiganesis (Cmm) is a quarantine-worthy pest in $M{\acute{e}}xico$. The implementation and validation of new technologies is necessary to reduce the time for bacterial detection in laboratory conditions and Raman spectroscopy is an ambitious technology that has all of the features needed to characterize and identify bacteria. Under controlled conditions a contagion process was induced with Cmm, the disease epidemiology was monitored. Micro-Raman spectroscopy ($532nm\;{\lambda}$ laser) technique was evaluated its performance at assisting on Cmm detection through its characteristic Raman spectrum fingerprint. Our experiment was conducted with tomato plants in a completely randomized block experimental design (13 plants ${\times}$ 4 rows). The Cmm infection was confirmed by 16S rDNA and plants showed symptoms from 48 to 72 h after inoculation, the evolution of the incidence and severity on plant population varied over time and it kept an aggregated spatial pattern. The contagion process reached 79% just 24 days after the epidemic was induced. Micro-Raman spectroscopy proved its speed, efficiency and usefulness as a non-destructive method for the preliminary detection of Cmm. Carotenoid specific bands with wavelengths at 1146 and $1510cm^{-1}$ were the distinguishable markers. Chemometric analyses showed the best performance by the implementation of PCA-LDA supervised classification algorithms applied over Raman spectrum data with 100% of performance in metrics of classifiers (sensitivity, specificity, accuracy, negative and positive predictive value) that allowed us to differentiate Cmm from other endophytic bacteria (Bacillus and Pantoea). The unsupervised KMeans algorithm showed good performance (100, 96, 98, 91 y 100%, respectively).