• Title/Summary/Keyword: Design of Photobioreactor

Search Result 20, Processing Time 0.025 seconds

Carbon Dioxide Fixation and Light Source Effects of Spirulina platensis NIES 39 for LED Photobioreactor Design (Spirulina platensis NIES 39를 이용한 LED 광생물반응기에서의 이산화탄소 고정화와 광원 효과)

  • Kim, Ji-Youn;Joo, Hyun;Lee, Jae-Hwa
    • Applied Chemistry for Engineering
    • /
    • v.22 no.3
    • /
    • pp.301-307
    • /
    • 2011
  • Optimal culture conditions of Spirulina platensis NIES 39 have been established using different types of light sources. Several types of photobioreactors were designed and the increase of biomass, the amount of $CO_2$, fixation and the production of chlorophyll content were studied. The result revealed that the input conditions of a 10 min period per 4 h at the condition of 5% $CO_2$ and 0.1 vvm, were excellent in the growth. The growth showing the maximum biomass accumulation is limited to 1.411 g/L when using the fluorescent bulb and the low powered surface mount device (SMD) type LEDs which were equipped-inside in the photobioreactor. However, the biomass exceeded up to 1.758 g/L level when a high powered red LED (color temperature : 12000 K) photobioreactor system was used. The $CO_2$ fixation speed and rate were increased. Although the total production of chlorophyll content undergoes a proportional increase in the biomass, the net content per dry cell weight (DCW) showed the higher production with a blue LED (color temperature : 7500 K) light than that of any other wavelengths. The carbon dioxide loss was marked as 0.15% of the inlet gas (5% $CO_2/Air$, v/v) at the maximum biomass culture condition.

Comparison of Biomass Productivity of the Microalgae, Tetraselmis sp. KCTC12236BP, in Polyvinyl Chloride Marine Photobioreactor and High Density Polyethylene Marine Photobioreactor (폴리비닐클로라이드 해양광생물반응기와 고밀도 폴리에틸렌 해양광생물반응기에서 미세조류, Tetraselmis sp. KCTC12236BP의 생산성 비교)

  • Jung, Seung-Gyun;Kim, Su-Kwon;Bun, Moon-Sup;Cho, Yonghee;Shin, Dong-Woo;Kim, Z-Hun;Lim, Sang-Min;Lee, Choul-Gyun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.8 no.1
    • /
    • pp.18-23
    • /
    • 2016
  • It is important to design photobioreactor by cheap material for economical microalgal biomass production. In this study, two types of marine photobioreactors (MPBR), made by either polyvinyl chloride (MPBR-PVC) or high density poly ethylene (MPBR-HDPE), are used and performance of these were compared. Tetraselmis sp. KCTC 12236BP is a green marine alga that isolated from Ganghwa Island, Korea, and the strain was used for marine cultivations using MPBR-PVC and MPBR-HDPE. The cultivations were performed three times in the spring season of 2012 using MPBR-PVC and of 2013 using MPBR-HDPE in the coastal area of Young Heung Island. As the results, MPBR-PVC shows higher biomass productivities than MPBR-HDPE, due to its high light transmittance. In the cultivations using MPBR-PVC, the average sea water temperature was $11.5^{\circ}C$ during the first experiment and $16.5^{\circ}C$ during the second and third experiments. Average light intensities during three times for experiments were 407.5, 268.1 and $273.0{\mu}{\cdot}E{\cdot}m^{-2}{\cdot}s^{-1}$, respectively. The maximum fresh cell weight and average biomass productivity were $1.2g{\cdot}L^{-1}$ and $0.12g{\cdot}L^{-1}{\cdot}day^{-1}$. These results showed that Tetraselmis sp. KCTC12236BP were adapted well with the environmental conditions from ocean, and grow in the MPBR-PVC and MPBR-HDPE.

Design and Fabrication of a Light-Guiding Plate for a Photobioreactor Utilizing a Hybrid LED Plus Sunlight Source (LED와 태양광 하이브리드 광원을 이용한 광생물 반응기용 도광판 설계 및 제작)

  • Lim, Hyon-Chol;Yang, Seung-Jin;Baek, Jun-Hyeok;Kim, Jae-Young;Jang, Kyungmin;Kim, Jongtye;Jeong, Sanghwa;Park, Jong-Rak
    • Korean Journal of Optics and Photonics
    • /
    • v.27 no.2
    • /
    • pp.73-80
    • /
    • 2016
  • In this paper, we report the results of a study on the design and fabrication of a light-guiding plate (LGP) using a hybrid light-emitting diode (LED) and sunlight source that can be applied to a photobioreactor. LGP patterns for the LED source were designed and engraved on an LGP, together with previously reported patterns for a sunlight source. A control system for the hybrid LGP was designed to maintain the output photon flux density (PFD) from the LGP at a constant value. When the target value of the output PFD was set to $70{\mu}E/(m^2{\cdot}s)$, the error range of the output PFD was found to be within ${\pm}2%$.

Design and Fabrication of Light Guiding Plate for Photobioreactor (광생물 반응기를 위한 도광판 설계 및 제작)

  • Park, Gi Chan;Kim, Hun;Shin, Seong Seon;Shin, Hyun Keel;Kim, Jongtye;Jeong, Sanghwa;Park, Jong Rak
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.2
    • /
    • pp.55-63
    • /
    • 2012
  • We present results of optical design and fabrication of a light guiding plate (LGP) to be used as an illumination system for photobioreactors. Modeling of a light-emitting diode (LED) light source, a reflection film, and LGP patterns was performed. Especially, the LGP patterns were modeled as Lambertian scatterers. The modeling parameters (reflectance, scatterer width) were determined through matching simulations with the experimentally measured illuminance distribution for a test LGP. An LGP for an LED light source was designed with the extracted model parameters, and fabricated using a computerized numerical control machine. Optical characteristics including average illuminance and uniformity of illuminance distribution were measured for the fabricated LGP.

Utilization of CFD Simulation Model for a Bubble Column Photobioreactor (버블 칼럼 광생물반응기의 내부 유동분석을 위한 전산유체역학 시뮬레이션 모델의 이용)

  • Yoo, J.I.;Lee, I.B.;Hwang, H.S.;Hong, S.W.;Seo, I.H.;Bitog, J.P.;Kwon, K.S.;Kim, Y.H.
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.5
    • /
    • pp.1-8
    • /
    • 2009
  • Photobioreactor (PBR) that houses and cultivates microalgae providing a suitable environment for its growth, such as light, nutrients, CO2, heat, etc. is now getting more popular in the last decade. Among the many types of PBRs, the bubble column type is very attractive because of its simple construction and easy operation. However, despite the availability of these PBRs, only a few of them can be practically used for mass production. Many limitations still holdback their use especially during their scale-up. To enlarge the culture volume and productivity while supplying optimum environmental conditions, various PBR structures and process control are needed to be investigated. In this study, computational fluid dynamics (CFD) was economically used to design a bubble-column type PBR taking the place of field experiments. CFD is a promising technique which can simulate the growth and production of microalgae in the PBR. To study bubble column PBR with CFD, the most important factor is the possibility of realizing bubble. In this study, multi-phase models which are generally used to realize bubbles were compared by theoretical approaches and comparing in a 2D simulation. As a result, the VOF (volume of fluid) model was found to be the most effective model to realize the bubbles shape as well as the flow inside PBR which may be induced by bubble injection. Considering the accuracy and economical efficiency, 0.005 second time step size was chosen for 2.5 mm mesh size. These results will be used as criteria for scale-up in the PBR simulation.

The Acute Toxicity Effect of Triotganotin on the Growth of Microalgae and Shellfish and A Design of A Chemostat System for the Chronic Toxicity Experiment (미세조류와 패류의 성장에 미치는 Triorganotin의 급성 독성영향 및 만성독성 실험을 위한 Chemostat System의 설계)

  • Tak, Keon-Tae;Lee, Hyong-Ho;Hong, Yoog-Ki;Kim, Joong Kyun
    • Journal of Life Science
    • /
    • v.7 no.4
    • /
    • pp.377-383
    • /
    • 1997
  • The acute toxicity effect of triorganotin of trioganotin on the growth of microalgae and shellfish was investigated through flask culture. The value of 120 hr-LC$_{50}$ that is the median lethal concentration of TBTO on the shellfish (R. philipinarum) was found to be 6 $\mu$g/L. The acute toxicity effect of TBTO on T. suecica was obviously shown even at the concentration of 0.5 $\mu$g/L, and the effect diminished as the initial cell density increased. The effect also diminished less in the experiment done under aeration than in that done under non-aeration. To design a chemostat system for the test of chronic toxicity, the culture of T. suecica was executed in photobioreactor. In batch culture, the profiles of chlorophyII a and D.C.W. showed the growth of T. suecica very well, and the maximum specific growth rate was estimated to be 0.54 d$^{-1}$. with this value, as a dilution rate in contimuous culture, pH was nicely maintained between 7 and 9 when air was supplied with 3% CO$_{2}$. From all results and the natural environment of clam, a novel chemostat system was invented. Through this system, we can observe each independent toxicity effect of TBTO and plankton and combined toxicity effect as well.

  • PDF

Utilization of Building Colors with the Energy-Oriented Algae Façade System

  • Jo, Han-Sol;Han, Seung-Hoon
    • KIEAE Journal
    • /
    • v.17 no.1
    • /
    • pp.43-48
    • /
    • 2017
  • Purpose: Building owners or residents have concerns to strive for energy-saving and environmental conservation by utilizing with eco-friendlier energy resources for their physical environment. In this paper, an algae façade system is proposed as an energy-friendly building component to improve energy productivity and indoor environmental quality, and this study aims at verifying alternative technologies for implementing building elevations that contain various colors equipped with algae façade systems and suggesting design guidelines to enhance both building performance and design values. Method: The color of algae is basically ranged about the saturation green, and it is hardly converted to other variations. Such a problem can be resolved through the artificial lights like LED (Light Emitting Diode) lamps to mix the color from the algae and buildings could possibly change the elevation in many ways under the influence of daylight. Result: As a result, the suggested system may increase the aesthetic aspect of the building in response to environmental changes. The system cannot possibly be applied for only new construction, but also it can be utilized with the existing buildings as well. The proposed system is expected to be applied not only a new construction and any existing buildings as well, and it will cover from the environmentally friendly energy generation in the industry to a new application system for increasing energy efficiency and the beauty of building envelopes.

A Study on the Development of a Thin Flat Panel Photo-bioreactor Case (얇은 평판형 광생물 반응기 케이스 개발에 관한 연구)

  • Ahn, Dong-Gyu;Ahn, Yeong-Su;Jeong, Sang-Hwa
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.9
    • /
    • pp.946-957
    • /
    • 2012
  • The objective of this paper is to investigate into the development of a thin flat panel photo-bioreactor case with characteristics shapes. The thin flat panel photo-bioreactor case was designed to be manufactured from a plastic thermoforming process. A proper design with a relatively high rigidity was obtained through the structural analyses for different designs of the photo-bioreactor case. The thermoforming analyses were performed. From the results of the thermoforming analyses, a proper forming condition and the formability of the designed plastic photo-bioreactor case were estimated. The thermoforming moulds for the flat panel photobioreactor cases were manufactured. The thermoforming experiments were performed to examine the manufacturability of the designed flat panel photo-bioreactor cases. From the results of the thermoforming experiments, it was shown that thin flat panel photo-bioreactor cases with characteristic shapes can be manufactured from the designed thermoforming mould and process.

A Study on the Design Criteria of Photobioreactor for the Efficiency of Light-Utilization (빛 이용효율 향상을 위한 광생물반응기 설계 기준에 관한 연구)

  • 류현진;이진석;오경근
    • KSBB Journal
    • /
    • v.19 no.4
    • /
    • pp.257-262
    • /
    • 2004
  • Recently, there is a growing interest in microalgae and the use of microalgae focused on the production of various high value metabolite used in food, pharmaceuticals and cosmetics. The key limiting factor in high density algal cultivation is the light and algal growth is defined by light intensity and light penetration depth into the culture medium. The effect of light with various light paths, S/V ratios, light intensities, and 50% duty cycle on the growth of microalgae was examined to enhance microalgal biomass productivity and photosynthetic efficiency. We confirmed that the utilization of efficient light energy was obtained from 4 cm of diameter, 57.6% of S/V ratio, 62 ${\mu}$mol/㎡/s of light intensity.

Optimal Temperature and Light Intensity for Improved Mixotrophic Metabolism of Chlorella sorokiniana Treating Livestock Wastewater

  • Lee, Tae-Hun;Jang, Jae Kyung;Kim, Hyun-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.11
    • /
    • pp.2010-2018
    • /
    • 2017
  • Mixotrophic microalgal growth gives a great premise for wastewater treatment based on photoautotrophic nutrient utilization and heterotrophic organic removal while producing renewable biomass. There remains a need for a control strategy to enrich them in a photobioreactor. This study performed a series of batch experiments using a mixotroph, Chlorella sorokiniana, to characterize optimal guidelines of mixotrophic growth based on a statistical design of the experiment. Using a central composite design, this study evaluated how temperature and light irradiance are associated with $CO_2$ capture and organic carbon respiration through biomass production and ammonia removal kinetics. By conducting regressions on the experimental data, response surfaces were created to suggest proper ranges of temperature and light irradiance that mixotrophs can beneficially use as two types of energy sources. The results identified that efficient mixotrophic metabolism of Chlorella sorokiniana for organics and inorganics occurs at the temperature of $30-40^{\circ}C$ and diurnal light condition of $150-200{\mu}mol\;E{\cdot}m^{-2}{\cdot}s^{-1}$. The optimal specific growth rate and ammonia removal rate were recorded as 0.51/d and 0.56/h on average, respectively, and the confirmation test verified that the organic removal rate was $105mg\;COD{\cdot}l^{-1}{\cdot}d^{-1}$. These results support the development of a viable option for sustainable treatment and effluent quality management of problematic livestock wastewater.