• Title/Summary/Keyword: Design of Experiment[DOE]

Search Result 299, Processing Time 0.027 seconds

Study on decreasing displacement of the MC(machining center) moved column with high-speed for optimization of acceleration and DOE(Design Of Experiment) (가속도 최적화 및 형상 최적화를 통한 수직 컬럼 이동형 머시닝 센터의 진동 저감에 대한 연구)

  • Cho, Young-Duk;Lee, Choon-Man;Yoon, Sang-Hwan;Chung, Won-Jee
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.1
    • /
    • pp.35-42
    • /
    • 2008
  • By the reason of increased demand of high productivity and quality, the manufacturer have an effort in many directions of a machine tool industries. Among there, we proposed method of decreasing displacement in MC(machining center). In other words, Quality related with vibration of a tool cutting products. For decreasing it, improved by optimizing a shape of the column-part and acceleration curves of motors. In this paper we could find design factors has much influence on decreasing the displacement using the DOE(Design of Experiments) and optimized the level of the factors using $ADAMS^{(R)}$ and $MINITAB.^{(R)}$ And we suggest optimized a acceleration curve using $Matlab^{(R)}$.

A Study on Molding Condition of Aspheric Glass Lenses Using Design of Experiments Slow Cooling Condition

  • Cha, Du-Hwan;Lee, June-Key;Kim, Hyun-Uk;Kim, Sang-Suk;Kim, Hye-Jeong;Park, Yong-Pil;Jeong, Jong-Guy;Kim, Jeong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.464-464
    • /
    • 2008
  • This study investigated the slow cooling conditions in the molding of aspheric glass lens using the design of experiment (DOE). The optimization of the slow cooling conditions with respect to the form accuracy (PV) of the molded lens were ascertained by employing full factorial design. As a result of the analysis of variance (ANOVA) and P-value (significance level), it was verified that slow cooling rate represent the most significant operative variables that affect the corresponding response variable. In the optimum condition, the molded lens show 82% of transcription ratio.

  • PDF

Design Optimization of Centrifugal Pump Impeller Using DOE (실험계획법을 사용한 원심펌프 임펠러 최적설계)

  • Kim, Sung;Choi, Young-Seok;Yoon, Joon-Yong;Kim, Deok-Su
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.3
    • /
    • pp.36-42
    • /
    • 2008
  • In this paper, the performance characteristics of the impeller in a centrifugal pump were investigated using DOE(Design of Experiment) with commercial CFD software. Geometric parameters of vane plane development were defined with the meridional shape and frontal view of the impeller. The incidence angles and the exit blade angle were selected as main parameters using 2k factorial and the influences of selected design parameters were examined through the optimization process using RSM.

DOE approach in the FE Simulation of Liner Forging Process (실험계획법을 적용한 라이너 단조 공정의 유한요소해석)

  • Kim, Y.G.;Kang, G.P.;Seo, S.J.;Lee, J.K.;Yoon, T.S.;Lee, K.
    • Transactions of Materials Processing
    • /
    • v.27 no.6
    • /
    • pp.356-362
    • /
    • 2018
  • A liner is a crucial component that directly affects the penetration performance of the shaped charge warhead. If the material of the liner has fine grain size and high strength, then the penetration performance can be further improved. There have been attempts to use a preform obtained by a severe plastic deformation (SPD) process. In this study, the process of minimizing the strain deviation to maintain the characteristics of material obtained by the severe plastic deformation process was investigated. The FE analysis of liner forging process was performed using the design of experiments (DOE), to optimize various shape parameters of the forming process such as shape of preform and forging die. As a result, the combination of design variables with the minimum effective strain deviation in the liner forging process were obtained.

Improvement of Asymmetric Dual Lens Actuator with slim thickness (비대칭 형상을 갖는 슬림형 듀얼 렌즈 액추에이터의 개선)

  • Woo, Jung-Hyun;Lim, Jea-Kyung;Yoon, Jun-Ho;Park, No-Cheol;Park, Young-Pil;Park, Kyoung-Su
    • Transactions of the Society of Information Storage Systems
    • /
    • v.7 no.1
    • /
    • pp.13-18
    • /
    • 2011
  • As a standard of optical disk drive (ODD) was determined to Blu-ray diks (BD), researches for securing slim drive thickness, high data transfer rate and high capacity have been progressed. The actuator for applying BD is also required to have high performances, such as compatibility, slim thickness and 3-axis motion. In this paper, an asymmetric dual lens actuator is proposed to satisfy abovementioned performances. To design the actuator in a limited space, stress analysis and design of experiment (DOE) are performed to reduce weight of moving part and increase driving force and flexible mode frequency. Consequently, the final model, which is satisfied with specifications, is secured.

A Study on Six Sigma Robust Design of Gripper Part for LCD Transfer System (식스 시그마 기반 LCD이송장치의 Gripper부 강건설계에 관한 연구)

  • Chung, W.J.;Jung, D.W.;Kim, S.B.;Yoon, Y.M.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.5
    • /
    • pp.65-71
    • /
    • 2006
  • This paper presents the robust design of gripper part for a high-speed LCD(Liquid Crystal Display) transfer system. In this paper, the $1^{st}$ DOE(Design of Experiment) is conducted to find out main-effect factors for the design of gripper part. Thirty-six analysis are performed using $ANSYS^{(R)}$ and their results are statistically analyzed using $MINITAB^{(R)}$, which shows that the factors, i.e., First-width, Second-width, Rec-width, and thickness of gripper part, are more important than other factors. The main effect plots shows that the maximum deflection and mass of gripper part are minimized by increasing First-width, Second-width, Rec-width and thickness. The $2^{nd}$ DOE is conducted to obtain RSM(Response Surface Method) equation. The CCD(Central Composite Design) technique with four factors is used. Optimum design is conducted using the RSM equation. Genetic algorithm is used for optimal design. Six sigma robust design is conducted to find out a guideline for control range of design parameter. To obtain six sigma level quality, the standard deviations of design parameters are shown to be controlled within 5% of average design value.

Effect of Shape Parameters of Tool on Improvement of Joining Strength in Clinching (클린칭 접합력 향상을 위한 금형 형상변수의 영향도 평가)

  • Kim, J.Y.;Lee, C.J.;Lee, S.K.;Ko, D.C.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.18 no.5
    • /
    • pp.392-400
    • /
    • 2009
  • Clinching is a method of joining sheet metals together. This process can be substituted for the resistance spot welding on the joining of aluminum alloys. However, the joining strength of the clinching is lower than that of welding and riveting. The objective of this paper is to evaluate the effect of shape parameters of tools on the joining strength of the clinching and to optimize clinching tools. Twelve parameters have been selected as shape parameters on the clinching tools such as punch and die. The design of experiments (DOE) method is employed to investigate the effect of the shape parameters of tools on the joining strength of the clinching. The neck thickness and undercut of the clinched sheet metal after the clinching, and the separation load at detaching are estimated from the result of FEA using DEFORM. Optimal combination of shape parameters to maximize the joining strength of clinching is determined on the basis of the result of DOE and FEA. In order to validate the result of DOE and FEA, the experiment of clinching is performed for the optimal combination of shape parameters. It is shown from the result of the experiment that optimization of shape parameters improves the joining strength of clinching.

The DOE Based Robust Design to Reduce the Brake Squeal Noise (실험계획법에 기반한 브레이크 스퀼 노이즈 저감을 위한 강건 설계)

  • Kwon, Seong-Jin;Kim, Mun-Sung;Lee, Bong-Hyun;Lee, Dong-Won;Bae, Chul-Yong;Kim, Chan-Jung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.126-134
    • /
    • 2007
  • Although there has been substantial research on the squeal noise for the automotive brake system, robust design issues with respect to control factors equivalent to design variables in optimization, noise factors due to system uncertainties, and signal factors designed to accommodate a user-adjustable setting still need to be addressed. For the purpose, the robust design applied to the disk brake system has been investigated by DOE (Design of Experiments) based Taguchi analysis with dynamic characteristics. The specific goal of this methodology is to identify a design with linear signal-response relationship, and variability minimization. The finite element models of the disk brake assembly have been constructed, and the squeal noise problems have been solved by complex eigenvalue analysis. As the practical robust design to reduce the brake squeal noise, material properties of pad, disk, and backplate, thickness and geometry of pad are selected as control factors, material properties of pad and disk, and the contact stiffness have been considered as noise factors, and friction coefficient between pad and disk is chosen as a signal factor. Through the DOE based robust design, the signal-to-noise ratio and the sensitivity for each orthogonal array experiment have been analyzed. Also, it has been proved that the proposed robust design is effective and adequate to reduce the brake squeal noise.

Design of a Heat Exchanger to Reduce the Exhaust Temperature in a Spark-Ignition Engine (가솔린 엔진에서 배기 온도 저감을 위한 열교환기 설계 최적화)

  • Lee, Seok-Hwan;Park, Jung-Seo;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.10-17
    • /
    • 2007
  • Design of experiments (DOE) technique has been used to design an exhaust heat exchanger to reduce the exhaust gas temperature under high load conditions in a spark-ignition engine. The DOE evaluates the influence and the interaction of a selected eight design parameters of the heat exchanger affecting the cooling performance of the exhaust gas through a limited number of experiments. The heat exchanger was installed between the exhaust manifold and the inlet of the close-coupled catalytic converter (CCC) to reduce thermal aging. To maximize the heat transfer between exhaust gas and coolant, fins were implemented at the inner surface of the heat exchanger. The design parameters consist of the fin geometry (length, thickness, arrangement, and number of fin), coolant direction, heat exchanger wall thickness, and the length of the heat exchanger. The acceptable range of each design parameter is discussed by analyzing the DOE results.