• Title/Summary/Keyword: Design of Experiment(DOE)

Search Result 297, Processing Time 0.027 seconds

Analysis of computational fluid dynamics on design of nozzle for integrated cryogenic gas and MQL(minimum quantity lubrication) (극저온 가스와 MQL(minimum quantity lubrication)의 복합 분사를 위한 하이브리드 노즐 설계에 관한 전산유체역학 해석)

  • Song, Ki-Hyeok;Shin, Bong-Cheol;Yoon, Gil-Sang;Ha, Seok-Jae
    • Design & Manufacturing
    • /
    • v.13 no.3
    • /
    • pp.41-47
    • /
    • 2019
  • In conventional machining, the use of cutting fluid is essential to reduce cutting heat and to improve machining quality. However, to increase the performance of cutting fluids, various chemical components have been added. However, these chemical components during machining have a negative impact on the health of workers and cutting environment. In current machining, environment-friendly machining is conducted using MQL (minimum quantity lubrication) or cryogenic air spraying to minimize the harmful effects. In this study, the injection nozzle that can combined injecting minimum quantity lubrication(MQL) and cryogenic gas was designed and the shape optimization was performed by using computational fluid dynamics(CFD) and design of experiment(DOE). Performance verification was performed for the designed nozzle. The diameter of the sprayed fluid at a distance of 30 mm from the nozzle was analyzed to be 21 mm. It was also analyzed to lower the aerosol temperature to about 260~270K.

The Effect of Tension and Drop Height on Contact Angle of Droplet on Flexible Substrate in Roll-to-Roll Systems (롤투롤 시스템에서 플렉시블 소재에 인가된 장력과 분사 높이가 액적 접촉각에 미치는 영향)

  • Kim, Dongguk;Lee, Changwoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.3
    • /
    • pp.167-172
    • /
    • 2017
  • This study proposes a method for identifying correlations between tension and drop height for sessile droplets in a roll-to-roll processing system. The effect of tension and drop height on the contact angle of a sessile droplet is presented. Design of experiment (DOE) methodology and statistical analysis are used to define a correlation between the process parameters. The contact angle is decreased while increasing tension and drop height. The influence of the tension is less significant on the contact angle compared with the effect of the drop height. However, tension should be considered as a major parameter because it is not easy to fix with roll eccentricity and compensating speed of the driven roll. The results of this study show that the effect of tension on the contact angle of a sessile droplet is more important than drop height because the drop height is fixed when the process systems are determined.

Effect of the Molding Conditions on Formability in Progressive Glass Molding Press (순차이송방식 GMP 공정에서 공정변수가 유리렌즈 성형성에 미치는 영향)

  • Jung, T.S.;Park, K.S.;Kim, D.S.
    • Transactions of Materials Processing
    • /
    • v.18 no.8
    • /
    • pp.633-639
    • /
    • 2009
  • Remarkable progress had been made in both technology and production of optical elements including aspheric lens. In the past, precision optical glass lenses were produced through multiple processes such as grinding and polishing, but mass production of aspheric lenses requiring high accuracy and having complex profile was rather difficult. Against such a background, the high-precision optical GMP process was developed with an eye on mass production of precision optical glass pasts by molding press. This GMP process can produce with precision and good repeatability special form lenses such as for cameras, video cameras, aspheric lenses for optical items. In this study, Design Of Experiment(Taguchi method) was adopted to find a tendency of molding conditions that influence formability. Three main factors for molding conditions were selected based on pressure at pressing stage and temperature, pressure at cooling stage. Also, the DOE was carried out and the interference patterns were measured to evaluate the formability of GMP process. From the results, it was found that the cooling pressure is the most sensitive parameter for progressive GMP process.

Development of the Optimization Analysis Technology for the Combustion System of a HSDI Diesel Engine (HSDI 디젤엔진의 연소계 최적화 해석기술 개발)

  • Lee Je-Hyung;Lee Joon-Kyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.153-158
    • /
    • 2006
  • To optimize the combustion system in a HSDI diesel engine, a new analysis technology was developed. The in-cylinder 3-D combustion analysis was carried out by the modified KIVA-3V, and the spray characteristics for the high pressure injection system were analyzed by HYDSIM. The combustion design parameters were optimized by coupling the KIVA-3V and the iSIGHT. The optimization procedure consists of 3 steps. The $1^{st}$ step is the sampling method by the Design of Experiment(DOE), the $2^{nd}$ step is the approximation using the Neural Network method, and the $3^{rd}$ step is the optimization using the Genetic Algorithm. The developed procedures have been approved as very effective and reliable, and the computational results agree well with the experimental data. The analysis results show that the optimized combustion system in a HSDI diesel engine is capable of reducing NOx and Soot emissions simultaneously keeping a same level of the fuel consumption(BSFC).

Development of Rotary VCM type Actuator for Small Form Factor Optical Disk Drive (초소형 광디스크 드라이브용 VCM타입 엑추에이터 개선)

  • Woo, Jung-Hyun;Kim, Sa-Ung;Song, Myong-Gyu;Lee, Dong-Joo;Park, No-Cheol;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.474-478
    • /
    • 2006
  • It is becoming more significant to develop a rotary voice coil motor(VCM) type's actuator for small form factor (SFF) optical disk drive(ODD), as portables are getting more and more popularized nowadays. The actuator which is applicable to small-sized ODD with a compact flash(CF) II card size was developed and fabricated. The experimental results showed that the finite element(FE) model is different from the fabricated model. And so flexible mode frequencies did not satisfy specifications of small-sized ODD, and tuning. Tuning procedures were required to improve dynamic characteristics of the fabricated actuator through finite difference method(FDM). At first, design variables were extracted through parameter study and the tuned FE model was improved by design of experiment(DOE). Consequently, It was confirmed that the improved model was applicable to SFF ODD.

  • PDF

Optimum Design of Dual Orifice Fuel Nozzle (이중 오리피스 연료 노즐 최적설계)

  • Lim, O-Kaung;Choi, Eun-Ho;Kim, Sung-Sub
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.4
    • /
    • pp.407-416
    • /
    • 2007
  • Fuel spray nozzle has a critical effect on combustion characteristics. Mass flow rate and SMD(sauter mean diameter) were selected as design variables by using the experiment data of various types of duplex fuel nozzles for the swirl atomizers. The sensitivity of each design variable on the mass flow rate and SMD was analyzed and the uniformity of mass flow rate was investigated through the shape optimization of duel-orifice-type swirl atomizers. The design variables that have a little effect on the optimum design were excluded using the DOE(design of experiments) method, which enabled the optimization of sensitive design variables on mass flow rate and limit tolerance. The SMD of the research spray nozzle that was used in this study was found to be most similar to that of the calculation results using the Jasuja's SMD relationship. This study showed the specific characteristics of duel orifice type swirl atomizers and the optimization of these kinds of nozzle. This study provided the optimization design of mass flow rate and its allowable tolerance.

Study on the Optimization of Parameters for Burring Process Using 980MPa Hot-rolled Thick Sheet Metal (980MPa급 열연 후판재 버링 공정의 변수 최적화 연구)

  • Kim, S.H.;Do, D.T.;Park, J.K.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.30 no.6
    • /
    • pp.291-300
    • /
    • 2021
  • Currently, starting with electric vehicles, the application of ultra-high-strength steel sheets and light metals has expanded to improve mileage by reducing vehicle weight. At a time when internal combustion engine vehicles are rapidly changing to electric vehicles, the application of ultra-high-strength steel is expanding to satisfy both weight reductions and the performance safety of the chassis parts. There is an urgent need to improve the quality of parts without defects. It is particularly difficult to estimate the part formability through the finite element method (FEM) in the burring operation, so product design has been based on the hole expansion ratio (HER) and experience. In this study, design of experiment (DOE), analysis of variance (ANOVA), and regression analysis were combined to optimize the formability by adjusting the process variables affecting the burring formability of ultra-high-strength steel parts. The optimal variables were derived by analyzing the influence of variables and the correlation between the variables through FE analysis. Finally, the optimized process parameters were verified by comparing experiment with simulation. As for the main influence of each process variable, the initial hole diameter of the piercing process and the shape height of the preforming process had the greatest effects on burring formability, while the effect of a lower round of punching in the burring process was the least. Moreover, as the diameter of the initial hole increased, the thickness reduction rate in the burring part decreased, and the final burring height increased as the shape height during preforming increased.

Optimization of Operating Conditions for a 10 kW SOFC System (10kW급 건물용 고체산화물연료전지(SOFC) 시스템 모델을 이용한 운전조건 최적화 연구)

  • LEE, YULHO;YANG, CHANUK;YANG, CHOONGMO;PARK, SANGHYUN;PARK, SUNGJIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.1
    • /
    • pp.49-62
    • /
    • 2016
  • In this study, a solid oxide fuel cell (SOFC) system model including balance of plant (BOP) for building electric power generation is developed to study the effect of operating conditions on the system efficiency and power output. SOFC system modeled in this study consists of three heat-exchangers, an external reformer, burner, and two blowers. A detailed computational cell model including internal reforming reaction is developed for a planer SOFC stack which is operated at intermediate temperature (IT). The BOP models including an external reformer, heat-exchangers, a burner, blowers, pipes are developed to predict the gas temperature, pressure drops and flow rate at every component in the system. The SOFC stack model and BOP models are integrate to estimate the effect of operating parameters on the performance of the system. In this study, the design of experiment (DOE) is used to compare the effects of fuel flow rate, air flow rate, air temperature, current density, and recycle ratio of anode off gas on the system efficiency and power output.

Developing the Linkage System Between Statistical Quality Control and ISO 9000 Series (통계적 품질관리와 ISO 9000 시리즈와의 연결시스템 개발)

  • 김형준;오성균
    • Journal of the Korea Society of Computer and Information
    • /
    • v.3 no.4
    • /
    • pp.174-192
    • /
    • 1998
  • These day in the Quality Assurance System, it required that computer system is able to utilize SQC and ISO 9000 series, just then. However. because SQC is necessary to special branch of statistical experience, it is very hard to use and have a bound in that apply to practical business. Therefor in this paper, we proposed the software system which is control, at the same time, SQC and ISO 9000 series, in addition to avail without statistical knowledge. For the shake of this point, the substance of this study is largely separated dual part that ISO 9000 system for which is limited to use design of basic system, test, experiment, tracking incongruent part, analysis condemned goofs, and SQC system for which is to limited to use control chart, estimate, statistical testing, design of experiment(DOE) which used to commonly in Quality Control System. Expected efficiency of this paper is to set Qualify Management System, transfer qualify consciousness, satisfy the customer, increase reliability, in particular, it is expected that it is very useful to minor enterprises of manufacturing-centered.

  • PDF

Identification of Thermal Flow Boundary Conditions for Three-way Catalytic Converter Using Optimization Techniques (최적화 기법을 이용한 삼원촉매변환기의 열유동 경계조건의 동정)

  • Baek, Seok-Heum;Choi, Hyun-Jin;Kim, Kwang-Hong;Cho, Seok-Swoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3125-3134
    • /
    • 2010
  • Three-way catalyst durability in the Korea requires 5 years/80,000km in 1988 but require 10 years/120,000km after 2002. Domestic three-way catalyst satisfies exhaust gas conversion efficiency or pressure drop etc. but don't satisfy thermal durability. Three-way catalyst maintains high temperature in interior domain but maintain low temperature on outside surface. This study evaluated thermal durability of three-way catalyst by thermal flow and structure analysis and the procedure is as followings. Thermal flow parameters ranges were determined by vehicle test and basic thermal flow analysis. Response surface for rear catalyst temperature was constructed using the design of experiment (DOE) for thermal flow parameters. Thermal flow parameters for rear catalyst temperature in vehicles examination were predicted by desirability function. Temperature distribution of three-way catalyst was estimated by thermal flow analysis for predicted thermal flow parameters.