• Title/Summary/Keyword: Design frequency

Search Result 11,257, Processing Time 0.042 seconds

Optimum Design of a 3-DOF Ultra-Precision Positioning Mechanism Using Boosters (부스터를 이용한 3자유도 초정밀 위치결정 기구의 최적설계)

  • Han Seog Young;Yi Byung-Ju;Kim Seon Jung;Kim Jong O;Chung Goo Bong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.6
    • /
    • pp.101-109
    • /
    • 2005
  • Ultra-precision positioning systems basically require high natural frequency and sufficient workspace. To cope with this requirement, flexure hinge mechanisms have been proposed. However, previous designs are hard to satisfy the functional requirements of the system due to difficulty in modeling and optimizing process applying an independent axiomatic design. Therefore, this paper proposes a new design and design-order based on semi-coupled axiomatic design. A planar 3 DOF parallel type micro mechanism is chosen as an exemplary device. Based on preliminary kinematic analysis and dynamic modeling of the system, an optimal design has been carried out. To check the effectiveness of the optimal parameters obtained from theoretical approach, simulation is performed by FEM. The simulation result shows that a natural frequency of 200.53Hz and a workspace of $2000{\mu}m{\times}2000{\mu}m$ can be ensured, which is in very close agreement with the specified goal of design.

Study on FOWT Structural Design Procedure in Initial Design Stage Using Frequency Domain Analysis (주파수 영역 해석을 활용한 부유식 해상풍력 플랫폼 초기 구조설계 절차 연구)

  • Ikseung Han;Yoon-Jin Ha;Kyong-Hwan Kim
    • Journal of Wind Energy
    • /
    • v.14 no.1
    • /
    • pp.29-36
    • /
    • 2023
  • The analysis of the floating offshore wind turbine platform is based on the procedures provided by the IEC including the International Classification Society, which recommends the analysis in the time domain. But time-domain simulation requires a lot of time and resources to solve tens of thousands of DLCs. This acts as a barrier in terms of floating structure development. For final verification, it requires very precise analysis in the time domain, but from an initial design point of view, a simplified verification procedure to predict the quantity of materials quickly and achieve relatively accurate results is crucial. In this study, a structural design procedure using a design wave applied in the oil and gas industries is presented combined with a conservative turbine load. With this method, a quick design spiral can be rotated, and it is possible to review FOWTs of various shapes and sizes. Consequently, a KRISO Semi-Submersible FOWT platform was developed using a simplified design procedure in frequency-domain analysis.

Optical frequency locked loop using quadricorrelator (Quadricorrelator 방식을 이용한 광주파수 잠김루프 제작)

  • 유강희;박창수;박진우
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.12
    • /
    • pp.3286-3292
    • /
    • 1996
  • An experimental results of optical requency locked loop with DFB semiconductor laser as VCO are presented. Using quadricorrelator as frequency difference detector and frequency off-set locking technique with 1GHz reference frequency, frequency locking range of 140MHz was achieved. This paper reports the design and realization details of the loop.

  • PDF

Comparative Study of Flow Profiles & Discharge due to Rainfall Frequency Analysis (강우빈도 해석을 통한 하천 수리$\cdot$수문량 비교 연구)

  • Seo Kyu Woo;Lee In Rock;Won Chang Hee;Shim Bong Joo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1533-1537
    • /
    • 2005
  • The recent rainfall has happened to exceed the design rainfall after 1990 often, due to the characteristic of the rain to be changed. So, it is failing the ability safety of flood defense equipments to exist. This study analyzed the rainfall of Busan in 2003 since 1961 through the FARD2002(Frequency Analysis of Rainfall Duration). The result is equal to the thing which the design rainfall increased a little since 1991. The change of design rainfall created the result to be a flood discharge increase. This study investigated about the impact to influence on the river bank according to the change of flood discharge, the rainfall pattern change as well. This study used the program of HEC-RAS with HEC-HMS and calculated flood discharge with flood level of river. The result is equal to the thing which the computation became a flood level which exceed 50year(River design criteria-Korea water resources association 2002) criteria with 30year(River establishment criteria-Ministry of construction & transportation 1993), because of an area of impermeability increased of model basin.

  • PDF

Comparative Analysis of Regional and At-site Analysis for the Design Rainfall by Gamma and Non-Gamma Family (I) (Gamma 및 비Gamma군 분포모형에 의한 강우의 지점 및 지역빈도 비교분석 (I))

  • Ryoo, Kyong-Sik;Lee, Soon-Hyuk
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.4
    • /
    • pp.25-36
    • /
    • 2004
  • This study was conducted to derive the design rainfall by the consecutive duration using the at-site frequency analysis. Using the errors, K-S tests and LH-moment ratios, Log Pearson type 3 (LP3) and Generalized Extreme Value (GEV) distributions of Gamma and Non-Gamma Family, respectively were identified as the optimal probability distributions among applied distributions. Parameters of GEV and LP3 distributions were estimated by the method of L and LH-moments and the Indirect method of moments respectively. Design rainfalls following the consecutive duration were derived by at-site frequency analysis using the observed and simulated data resulted from Monte Carlo techniques. Relative root-mean-square error (RRMSE) and relative efficiency (RE) in RRMSE for the design rainfall derived by at-site analysis in the observed and simulated data were computed and compared. It has shown that at-site frequency analysis by GEV distribution using L-moments is confirmed as more reliable than that of GEV and LP3 distributions using LH-moments and Indirect method of moments in view of relative efficiency.

Vibration Analysis of Shaft with Impeller for Resin Chock Mixing Machine (Resin Chock 교반기용 임펠러가 달린 축의 진동해석)

  • Hong, Do-Kwan;Park, Jin-Woo;Baek, Hwang-Soon;Ahn, Chan-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.11
    • /
    • pp.970-977
    • /
    • 2008
  • This paper deals with the dynamic characteristics of the shaft with impeller model which is the most important part in developing the resin mixing machine. Through reverse engineering, it is possible to make the shaft with impeller geometry model which is necessary vibration characteristic analysis by commercial impeller. The natural frequency analysis and structural analysis using finite element analysis software are performed on the imported commercial shaft with impeller model. The most important fundamental natural frequency of the shaft with impeller model is around 14.5 Hz, which well agrees with modal testing. The most effective design variables were extracted by ANOM(analysis of means) and pareto chart. This paper presents approximation 2nd order polynomial as design variables using RSM(response surface methodology). Generally, RSM take 2 or 3 design variables, but this method uses 5 design variables with table of mixed orthogonal array. Further more, the analyzed result of the commercial shaft with impeller is to be utilized for the structural design of resin chock mixing machine.

Meta-model-based Design Method for Frequency-domain Performance Reliability Improvement (주파수 영역에서의 성능 신뢰도 향상을 위한 메타 모델을 이용한 설계 방법)

  • Son, Young Kap
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.1
    • /
    • pp.19-26
    • /
    • 2015
  • This paper proposes a design method for improving the frequency-domain performance reliability of dynamic systems with uncertain and degrading components. Discrete frequencies are used in this method as surrogates for the frequency band of interest, and the conformance of the frequency responses to the specification at these frequencies is utilized to model the frequency-domain performance reliability. A meta-model for the frequency responses, an extreme-value event, and the set-theory are integrated to improve the computational efficiency of the reliability estimation. In addition, a sample-based approach is presented to evaluate and optimize the estimated performance reliability. A case study of a vibration absorber system showed that the proposed design method has engineering applications.

Design of Robust Load Frequency Controller using Mixed Sensitivity based $H_{\infty}$ norm (혼합강도 $H_{\infty}$ 제어기법을 이용한 강인한 부하주파수 제어기 설계)

  • 정형환;김상효;이정필;한길만
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.88-98
    • /
    • 2000
  • In this paper, a robust controller using $H_{\infty}$ control theory has been designed for the load frequency control of interconnected 2-area power system. The main advantage of the proposed $H_{\infty}$ controller is that uncertainties of power system can be included at the stage of controller design. Representation of uncertainties is modeled by multiplicative uncertainly. In the mixed sensitivity problems, disturbance attenuation and uncertainty of the system is treated simultaneously. The robust stability and the performance of model uncertainties are represented by frequency weighted transfer function. The design of load frequency controller for each area was based on state-space approach. The comparative computer simulation results for the proposed controller and the conventional techniques such as the optimal control and the PID one were analyzed at the additions of various disturbances. Their deviation magnitude of frequency and tie line power flow at each area were mainly evaluated. Also the testing results of robustness for the cases that the perturbations of the all parameters of power system were amounted to about 20% were introduced. It was approved that the resultant performances of the proposed $H_{\infty}$ controller with mixed sensitivity were more robust and stable than the one of conventional controllers.

  • PDF

Frequency Response Characteristics of Air-Cooled Condenser in Case of Inputting Various Disturbances

  • Kim, Jae-Dol;Oh, Hoo-Kyu;Yoon, Jung-In
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.8 no.1
    • /
    • pp.14-28
    • /
    • 2000
  • The frequency response characteristics of a condenser were numerically studied for the control of refrigeration and air conditioning systems. The important parameters, such as the refrigerant flow rate, refrigerant temperature, air velocity, and air temperature at the condenser inlet, were analyzed. Superheated vapor, two phase, and subcooled liquid domain in condenser can be described by using the energy balance equation and the mass balance equation in refrigerant and tube wall, the basic equation for describing the dynamic characteristics of condenser can be derived. The transfer function for describing dynamic response of the condenser to disturbances can be obtained from using linearizations and Laplace transformations of the equation. From this transfer function, analytical investigation which affects the frequency responses of condenser has been made. Block diagrams were made based on the analytic transfer function; dynamic responses were evaluated in Bode diagrams on the frequency response. Through this study, it became possible that the information about the dynamic characteristics of air-cooled condenser is offered. The results may be used for determining the optimum design parameters in actual components and entire systems. Also, the mathematical models, frequency response may be used to help understanding, evaluate optimum design parameters, design control systems and determine on setting the best controller for the refrigeration and air-conditioning systems.

  • PDF

Design of High Frequency Heating Power Supply System Using Peck Current Mode Control (피크전류모드 제어를 적용한 고주파 심부발열 전원장치 설계)

  • Xu, Guo-Cheng;Zheng, Tao;Piao, Sheng-Xu;Qiu, Wei-Jing;Kim, Hee-Je
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.61-65
    • /
    • 2017
  • In this paper a prototype of high frequency heating power supply system based on the high frequency heating principle is designed to take the place of acupuncture, moxibustion, warm dressing treatment and some other traditional physical therapy methods. Which possess the advantages of low cost, convenient, easy operation and good effect. The high frequency heating power supply can generate a pulse voltage of more than 1KV with 300KHz switching frequency to heat the patient's skin. The skin temperature can reach to $41{\sim}42^{\circ}C$. The peak current control method is used to maintain the skin temperature in the designed range. The design of the main circuit is based on the flyback converter topology. An easier and practical design method is proposed in this paper. The power supply system prototype is verified to be stable and reliable by both the simulation and experimental results.