• Title/Summary/Keyword: Design flow

Search Result 8,695, Processing Time 0.065 seconds

FLUENT Code Analyses for Design Optimization of an Average Bi-directional Flow Tube (평균 양방향 튜브의 설계 최적화를 위한 FLUENT코드해석)

  • Kang, Kyong-Ho;Yun, Byong-Jin;Euh, Dong-Jin;Baek, Won-Pil
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.180-186
    • /
    • 2004
  • Average Bi-directional flow tube was suggested to measure single and two phase flow rate. Its working principle is similar with Pilot tube, however, it makes it possible to eliminate the cooling system which is normally needed to prevent from flashing in the pressure impulse line of Pilot tube when it is used in the depressurization condition. 3-dimensional steady state flow analyses using FLUENT 5.4 code were performed to validate the application of the averagebi-directional flow tube in case of water and air flow In this study, sensitivity studies have been performed to optimize the design features of the average hi-directional flow tube which can be applied for the various experimental conditions. For Re numbers above 1000, the k values are nearly constant regardless of the Re numbers and flow types and calculation results and experimental data coincides quite well. The current FLUENT calculation results suggest that linearity of the k values in various design features of the average BDFT is highly promising, which means that it is quite reasonable to select the typical design of the average BDFT for the convenience of the experimental conditions.

  • PDF

Study on the Effects of the Flow Characteristics and Size on the Peformance of Molten Carbonate Fuel Cells Using CFD (CFD를 통한 용융탄산염 연료전지의 유동 및 크기에 따른 운전 특성 분석)

  • KIM, DONG-WOO;KIM, HA-YOUNG;CHOI, JEONG-HWAN;LEE, CHANG-WHAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.2
    • /
    • pp.147-154
    • /
    • 2019
  • In this study, effects of flow types and size of molten carbonate fuel cells (MCFCs) were investigated using CFD simulation. In the simulation, the current collector of MCFCs were assumed to be an porous media. With the area of $0.09m^2$, the effect of flow types such as Co-flow, Counter-flow, Cross-flow were studied. After that the effect of the size and flow direction was studied. Among three-flow types, MCFCs with co-flow type shows more uniform distribution and current density distribution.

Fluidic oscillation characteristics of plastic flow meter with the variation of cross-sectional shape of splitters (스플리터 단면형상변화에 따른 플라스틱 유량계의 유동진동특성)

  • Lee, Sung-Hee
    • Design & Manufacturing
    • /
    • v.15 no.2
    • /
    • pp.56-62
    • /
    • 2021
  • In this study, design technology of a non-mechanical flow meter using fluidic oscillation generated during the fluid flow in the chamber was investigated. To with respect to design a splitter, which is the most important factor in fluid oscillation, a transient flow simulation analysis was performed for three types of shapes and changes in inlet flow velocity. The oscillation characteristics with respect to the time in each case were compared, and it was confirmed that the SM03 model was the best among the presented models. In addition, the FFT analysis of the fluid oscillation results for the SM03 model was used to obtain a linear correlation between the flow velocity change and the maximum frequency, and a frequency of 20.957 (Hz/m/s) per unit flow velocity was obtained. Finally, injection molding simulation and molding experiment of the chamber with the designed splitter were performed.

An Experimental Study on the Influences of Some Basic Design Parameters on the Performance Characteristics of the Cross-Flow Fan System in Air-Conditioner (에어컨용 직교류홴 시스템의 성능특성에 대한 기본적 설계변수의 영향에 관한 실험적 연구)

  • Koo, Hyoung Mo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.6
    • /
    • pp.695-702
    • /
    • 1999
  • A cross-flow fan which constitutes a fan-duct system with a stabilizer and a scroll-casing is widely used in many air-ventilating and air-conditioning devices. The cross-flow fan system has many design parameters which have crucial influence on the performance and the noise characteristics of the devices, which means many difficulties during the design stage of the devices and the general design guide has not sufficiently established yet. This study presents the experimental results of the parameter investigation of some chosen design parameter values, which are the shapes of the stabilizers, the profiles of the scroll casing part, and the diffusion angles of the flow exit. The results are expressed by the varying performance characteristics with the values of the parameters. They are found to have considerable effects on the system performance and should be considered with care in the design stage. Finally some helpful guides for the design and manufacturing of the cross-flow fan system are proposed.

Development of 3D DMFC Model for Flow Field Design (직접 메탄올 연료전지 유로 설계를 위한 3차원 모델 개발)

  • Kim, Hongseong;Danilov, Valeri A.;Lim, Jongkoo;Moon, Il
    • Korean Chemical Engineering Research
    • /
    • v.45 no.1
    • /
    • pp.93-102
    • /
    • 2007
  • The objective of this study is to develop a 3D DMFC model for modeling gas evolution and flow patterns to design optimal flow field for gas management. The gas management on the anode side is an important issue in DMFC design and it greatly influences the performance of the fuel cell. The flow field is tightly related to gas management and distribution. Since experiment for the optimal design of various flow fields is difficult and expensive due to high bipolar plate cost, computational fluid dynamics (CFD) is implemented to solve the problem. A two-fluid model was developed for CFD based flow field design. The CFD analysis is used to visualize and to analyze the flow pattern and to reduce the number of experiments. Case studies of typical flow field designs such as serpentine, zigzag, parallel and semi-serpentine type illustrate applications of the model. This study presents simulation results of velocity, pressure, methanol mole fraction and gas content distribution. The suggested model is verified to be useful for the optimal flow field design.

Computational Analysis of 3-Dimensional Viscous Flow within Centrifugal Compressors (원심압축기 내부유동의 점성 3차원 해석)

  • Park, Mu-Ryong;Choe, Beom-Seok;Yun, Ui-Su
    • 연구논문집
    • /
    • s.24
    • /
    • pp.107-117
    • /
    • 1994
  • In aerodynamic design of centrifugal compressors, impellers are designed through preliminary design and blade profile generation. In order to find out faults of the initially designed impellers, the detailed informations about internal flow phenomena such as pressure distribution, flow separation, blade loading, etc are essential. These informations can be acquired with flow measurements or computational flow analyses. In this study, we calculated 3-D viscous flow in 4 back-swept impellers which were designed in our laboratory, and analyzed the flow characteristics which influence the performance of impellers.

  • PDF

Development of the Low Noise Design Program for Construction Equipment's Muffler under the High Velocity Flow (유동 소음을 고려한 저소음 머플러 설계 프로그램 개발)

  • Kim, Hyung-Taek;Joo, Won-Ho;Bae, Jong-Gug
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.483-488
    • /
    • 2008
  • The exhaust system, including a muffler, is one of the major sources to generate the radiated noise of construction equipment. In general, the muffler is applied to construction equipment in order to reduce the exhaust noise. Sometimes, however, the higher exhaust noise can be experienced due to the flow effect inside a muffler. So, it is required to consider the flow effect to reduce the exhaust noise level of construction equipment. In this paper, various tests were performed to calculate the flow noise effect inside a muffler. Through a series of tests with respect to a variety of design parameters, a new design program for low noise muffler was developed and applied to reduce the exhaust noise of the construction equipments. These results make it possible to understand the dynamic characteristics of the flow noise and to design the low noise muffler for the construction equipments.

  • PDF

SHAPE OPTIMIZATION OF COMPRESSOR BLADES USING 3D NAVIER-STOKES FLOW PHYSICS

  • Lee K. D.;Chung J.;Shim J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.05a
    • /
    • pp.1-8
    • /
    • 2001
  • A CFD-based design method for transonic axial compressor blades was developed based on three-dimensional Navier-Stokes flow physics. The method employs a sectional three-dimensional (S3D) analysis concept where the three-dimensional flow analysis is performed on the grid plane of a span station with spanwise flux components held fixed. The S3D analysis produced flow solutions nearly identical to those of three-dimensional analysis, regardless of the initialization of the flow field. The sectional design based on the S3D analysis can include three-dimensional effects of compressor flows and thus overcome the deficiencies associated with the use of quasi-three-dimensional flow physics in conventional sectional design. The S3D design was first used in the inverse triode to find the geometry that produces a specified target pressure distribution. The method was also applied to optimize the adiabatic efficiency of the blade sections of Rotor 37. A new blade was constructed with the optimized sectional geometries at several span stations and its aerodynamic performance was evaluated with three-dimensional analyses.

  • PDF

Flow characteristics at the Impeller Exit of a Centrifugal Pump (원심펌프의 회전차 출구 유동 특성)

  • Hong, Soon-Sam;Kang, Shin-Hyoulg
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.36-44
    • /
    • 2000
  • The flow at the impeller exit is important to validate engineering design and numerical analysis of pumps. We installed axisymmetric collector instead of the volute casing, so there is no interaction between the impeller and casing. A hot-film probe and a high response pressure transducer are used to investigate the flow at impeller exit and vaneless diffuser region for design and off design flow rate. For a single suction centrifugal pump of low specific speed, the flow field such as velocity, flow angle, and total pressure are measured by traversing the probe across the vaneless diffuser. These data can be used for performance prediction, design, and numerical analysis of pumps.

  • PDF