• Title/Summary/Keyword: Design equations

Search Result 2,911, Processing Time 0.03 seconds

Configuration sensitivity analysis of mechanical dynamics

  • Bae, Daesung
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.1
    • /
    • pp.112-119
    • /
    • 2001
  • Design sensitivity is an important is an important device in improving a mechanical system design. A continuum design consists of the shape and orientation design. This research develops the shape and orientation design sensitivity method. The configura-tion design variables of multibody systems define the shape and orientation changes. The equations of motion are directly differentiated to obtain the governing equations for the design sensitivity. The governing equation of the design sensitivity is formulated as an over determined differential algebraic equation and treated as ordinary differential equations on mani-folds. The material derivative of a domain functional is performed to obtain the sensitivity due to shape and orientation changes. The configuration design sensitivities of a fly-ball governor system and a spatial four bar mechanism are obtained using the proposed method and are validated against those obtained from the finite difference method.

  • PDF

Numerical study on steel plate-concrete composite walls subjected to projectile impacts

  • Lee, Kyungkoo;Shin, Jinwon;Lee, Jungwhee;Kim, Kapsun
    • Steel and Composite Structures
    • /
    • v.44 no.2
    • /
    • pp.225-240
    • /
    • 2022
  • Local responses of steel plate-concrete composite (SC) walls under impact loads are typically evaluated using design equations available in the AISC N690s1-15. These equations enable design of impact-resistant SC walls, but some essential parts such as the effects of wall size and shear reinforcement ratio have not been addressed. Also, since they were developed for design basis events, improved equations are required for accurate prediction of the impact behaviors of SC walls for beyond design basis impact evaluation. This paper presents a numerical study to construct a robust numerical model of SC walls subjected to impact loads to reasonably predict the SC-wall impact behavior, to evaluate the findings observed from the impact tests including the effects of the key design parameters, and to assess the actual responses of full-scale SC walls. The numerical calculations are validated using intermediate-scale impact tests performed previously. The influences of the fracture energy of concrete and the conservative aspects of the current design equations are discussed carefully. Recommendations are made for design practice.

Simple Design of Commericial Pipe Flow (단일 상용관로의 간편설계)

  • Yu, Dong-Hun;Gang, Chan-Su
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.5
    • /
    • pp.565-574
    • /
    • 1998
  • The friction factor distribution of commercial pipes vary according to the pipe type and size. The present paper developed the friction factor equations of power law by analyzing the data reported by Colebrook(1938). Generally, pipe design requires pump power, discharge or pipe diameter for each condition given. Yoo(1995b) has suggested the basic equations for the explicit design of uniformly rough pipe and Yoo and Kang(1996) have refined those equations for the cases of uniformly rough pipe on a sloping bed with a pumping power. Furthermore Yoo and Kang(1997) have studied the design of commercial pipe for a general case. The approach gives relatively accurate solutions, but the equations obtained are rather complicated. In the present study two types of power law are developed for the friction factor of commercial pipe, and explicit forms of equations are generated by applying the power law friction factor equations for the simple design of commercial pipes.

  • PDF

New directions in the teaching and learning of differential equations: The RME approach (대학 미분방정식 교수.학습의 새로운 방향: RME 접근)

  • 권오남;신경희;신은주;김영신;최효진
    • Journal of Educational Research in Mathematics
    • /
    • v.12 no.3
    • /
    • pp.389-408
    • /
    • 2002
  • This paper is based on a teaching experiment research conducted in a differential equations course at Ewha Womans University. The purpose of this paper lies in seeking a new direction in the teaching and learning of college mathematics by applying RME's theoretical essence to the teaching of differential equations. For this purpose, the emergent procedure had to be carefully considered before to analyzing the existing problems in teaching differential equations and alternative access to reformed differential equations. Methods of developmental research, ideas concerning teaching procedure and instructional design are offered. This research demonstrates that a deeper understanding of differential equations by students can be achieved with the instructional design which reflects the RME theory.

  • PDF

Study on Optimization of Aerodynamic Design of A Jet Fan (제트송풍기의 공력설계 최적화에 관한 연구)

  • Seo, Seoung-Jin;Kim, Kwang-Yong;Chang, Dong-Wook
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.439-443
    • /
    • 2002
  • In this study, three-dimensional incompressible viscous flow analysis and optimization using response surface method are presented for the design of a jet fan. Steady, incompressible, three-dimensional Reynolds averaged Wavier-Stokes equations are used as governing equations, and standard k-$\epsilon$ turbulence model is chosen as a turbulence model. Governing equations are discretized using finite volume method. Sweep angles and maximum thickness of blade are used as design variables for the shape optimization of the impeller in response surface method. The experimental points which are needed to construct response surface are obtained from the D-optimal design and Full Factorial design and relations between design variables and response surface are examined.

  • PDF

Optimal Design of Vehicle Suspenion Systems Using Sensitivity Analysis (민감도 해석을 이용한 현가장치의 동역학적 최적설계)

  • 탁태오
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.3
    • /
    • pp.50-61
    • /
    • 1994
  • A method for performing dynamic design sensitivity analysis of vehicle suspension systems which have three dimensional closed-loop kinematic structure is presented. A recursive form of equations of motion for a MacPherson suspension system is derived as basis for sensitivity analysis. By directly differentiating the equations of motion with respect to design variables, sensitivity equations are obtained. The direct generalize for the application of multibody dynamic sensitivity analysis. Based on the proposed sensitivity analysis, optimal design of a MacPherson suspension system is carried out taking unsprung mass, spring and damping coefficients as design variables.

  • PDF

An Efficient Algorithm for Design Sensitivity Analysis of railway Vehicle Systems (철도차량의 설계 민감도 해석을 위한 효율적인 알고리즘 개발)

  • 배대성;조희제;백성호;이관섭;조연옥
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.299-306
    • /
    • 1998
  • Design sensitivity analysis of a mechanical system is an essential tool for design optimization and trade-off studies. This paper presents an efficient algorithm for the design sensitivity analysis of railway vehicle systems, using the direct differentiation method. The cartesian coordinate is employed as the generalized coordinate. The governing equations of the design sensitivity analysis are formulated as the differential equations. Design sensitivity analysis of railway vehicle systems is performed to show the validity and efficiency of the proposed method.

  • PDF

3 Dimensional Modeling and Sensitivity Analysis for Vibration Reduction of the Spin-Coater System

  • Park, Jin-Bae;Han, Chang-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.170.2-170
    • /
    • 2001
  • In this paper, the dynamic system modeling and the state sensitivity analysis of the spin-coater system for the reduction of the vibration are proposed. In the respect of modeling, the spin-coater system is composed of components of servomotor, belt, spindle, and a supported base. Each component is defined and combined modeling is derived to 3dimensional equations. Verification of modeling is verified by experimental values of actual system in the frequency domain. By direct differentiation the constraint equations with respect to kinematic design variables, such as eccentricity of spindle, moment of inertia, torsional stiffness and damping of supported base, sensitivity equations are derived to the verified state equations. Sensitivity of design variables could be used for vibration reduction and natural frequency shift in the frequency domain. Finally, dominant design variables ...

  • PDF

3-Dimensional Modeling and Sensitivity Analysis for Vibration Reduction of the Spin-Coater System (스핀 코터 시스템의 진동 저감을 위한 3차원 모델링과 민감도 해석)

  • 채호철;류인철;한창수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.2
    • /
    • pp.209-217
    • /
    • 2003
  • In this paper, the dynamic system modeling and the state sensitivity analysis of the spin-coater system are proposed for the reduction of the vibration. In the respect of modeling, the spin-coater system is considered to be composed of servomotor, spindle, supporting base and so on. Each component of model is combined and derived to 3 dimensional equations. The combined model is verified by experimental values of actual system in the frequency domain. By direct differentiation of the constraint equations with respect to kinematic design variables, such as eccentricity of spindle, moment of inertia, rotational stiffness and damping of supported base, sensitivity equations are derived to the verified state equations. Sensitivity of design variables could be used for vibration reduction and natural frequency shift in the frequency domain. Finally, dominant design variables are selected from the sensitivity analysis.

Sensitivity Analysis Using a Symbolic Computation Technique and Optimal Design of Suspension Hard Points (기호계산을 이용한 현가장치의 민감도 해석 및 설계점의 최적 설계)

  • Chun, Hung-Ho;Tak, Tae-Oh
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.26-36
    • /
    • 1999
  • A general procedure for determining the optimum location of suspension hard points with respect to kinematic design parametes is presented. Suspensions are modeled as connection of rigid bodies by ideal kinematic joints. Constraint equations of the kinematic joints are expressed in terms of the generalized coordinates and hard points. By directly differentiating the constraint equations with respect to the hard points, kinematic sencitivity equations are obtained. In order to cope with algebraic complexity associated with the differentiation process, a symbolic computation technique is used. A performance index is defined in terms of static design parameters such as camber, caster, toe, ect.. Gradient of the performance index can be analytically computed from the kinematic sensitivity equations. Optimization results show the effectiveness and validity of the procedure, which is applicable to any type of suspension if its kinematic configurations are given.

  • PDF