• 제목/요약/키워드: Design earthquake

검색결과 2,219건 처리시간 0.028초

2016년 경주지진 유발단층 시나리오 지진에 의한 국내 광역 도시 지진관측소에서의 강진동 모사 (Strong Ground Motion Simulation at Seismic Stations of Metropolises in South Korea by Scenario Earthquake on the Causative Fault of the 2016 Gyeongju Earthquake)

  • 최호선
    • 한국지진공학회논문집
    • /
    • 제24권2호
    • /
    • pp.59-65
    • /
    • 2020
  • The empirical Green's function method is applied to the foreshock and the mainshock of the 2016 Gyeongju earthquake to simulate strong ground motions of the mainshock and scenario earthquake at seismic stations of seven metropolises in South Korea, respectively. To identify the applicability of the method in advance, the mainshock is simulated, assuming the foreshock as the empirical Green's function. As a result of the simulation, the overall shape, the amplitude of PGA, and the duration and response spectra of the simulated seismic waveforms are similar with those of the observed seismic waveforms. Based on this result, a scenario earthquake on the causative fault of Gyeongju earthquake with a moment magnitude 6.5 is simulated, assuming that the mainshock serves as the empirical Green's function. As a result, the amplitude of PGA and the duration of simulated seismic waveforms are significantly increased and extended, and the spectral amplitude of the low frequency band is relatively increased compared with that of the high frequency band. If the empirical Green's function method is applied to several recent well-recorded moderate earthquakes, the simulated seismic waveforms can be used as not only input data for developing ground motion prediction equations, but also input data for creating the design response spectra of major facilities in South Korea.

Determination of earthquake safety of RC frame structures using an energy-based approach

  • Merter, Onur;Ucar, Taner;Duzgun, Mustafa
    • Computers and Concrete
    • /
    • 제19권6호
    • /
    • pp.689-699
    • /
    • 2017
  • An energy-based approach for determining earthquake safety of reinforced concrete frame structures is presented. The developed approach is based on comparison of plastic energy capacities of the structures with plastic energy demands obtained for selected earthquake records. Plastic energy capacities of the selected reinforced concrete frames are determined graphically by analyzing plastic hinge regions with the developed equations. Seven earthquake records are chosen to perform the nonlinear time history analyses. Earthquake plastic energy demands are determined from nonlinear time history analyses and hysteretic behavior of earthquakes is converted to monotonic behavior by using nonlinear moment-rotation relations of plastic hinges and plastic axial deformations in columns. Earthquake safety of selected reinforced concrete frames is assessed by using plastic energy capacity graphs and earthquake plastic energy demands. The plastic energy dissipation capacities of the frame structures are examined whether these capacities can withstand the plastic energy demands for selected earthquakes or not. The displacements correspond to the mean plastic energy demands are obtained quite close to the displacements determined by using the procedures given in different seismic design codes.

Development of earthquake instrumentation for shutdown and restart criteria of the nuclear power plant using multivariable decision-making process

  • Hasan, Md M.;Mayaka, Joyce K.;Jung, Jae C.
    • Nuclear Engineering and Technology
    • /
    • 제50권6호
    • /
    • pp.860-868
    • /
    • 2018
  • This article presents a new design of earthquake instrumentation that is suitable for quick decision-making after the seismic event at the nuclear power plant (NPP). The main objective of this work is to ensure more availability of the NPP by expediting walk-down period when the seismic wave is incident. In general, the decision-making to restart the NPP after the seismic event requires more than 1 month if an earthquake exceeds operating basis earthquake level. It affects to the plant availability significantly. Unnecessary shutdown can be skipped through quick assessments of operating basis earthquake, safe shutdown earthquake events, and damage status to structure, system, and components. Multidecision parameters such as cumulative absolute velocity, peak ground acceleration, Modified Mercalli Intensity Scale, floor response spectrum, and cumulative fatigue are discussed. The implementation scope on the field-programmable gate array platform of this work is limited to cumulative absolute velocity, peak ground acceleration, and Modified Mercalli Intensity. It can ensure better availability of the plant through integrated decision-making process by automatic assessment of NPP structure, system, and components.

2016년 경주지진 원인단층의 시나리오 지진에 의한 국내 광역도시 지진관측소에서의 추계학적 강진동 모사 (Stochastic Strong Ground Motion Simulation at South Korean Metropolises' Seismic Stations Based on the 2016 Gyeongju Earthquake Causative Fault)

  • 최호선
    • 한국지진공학회논문집
    • /
    • 제25권6호
    • /
    • pp.233-240
    • /
    • 2021
  • The stochastic method is applied to simulate strong ground motions at seismic stations of seven metropolises in South Korea, creating an earthquake scenario based on the causative fault of the 2016 Gyeongju earthquake. Input parameters are established according to what has been revealed so far for the causative fault of the Gyeongju earthquake, while the ratio of differences in response spectra between observed and simulated strong ground motions is assumed to be an adjustment factor. The calculations confirm the applicability and reproducibility of strong ground motion simulations based on the relatively small bias in response spectra between observed and simulated strong ground motions. Based on this result, strong ground motions by a scenario earthquake on the causative fault of the Gyeongju earthquake with moment magnitude 6.5 are simulated, assuming that the ratios of its fault length to width are 2:1, 3:1, and 4:1. The results are similar to those of the empirical Green's function method. Although actual site response factors of seismic stations should be supplemented later, the simulated strong ground motions can be used as input data for developing ground motion prediction equations and input data for calculating the design response spectra of major facilities in South Korea.

Preliminary strong ground motion simulation at seismic stations within nuclear power plant sites in South Korea by a scenario earthquake on the causative fault of 2016 Gyeongju earthquake

  • Choi, Hoseon
    • Nuclear Engineering and Technology
    • /
    • 제54권7호
    • /
    • pp.2529-2539
    • /
    • 2022
  • Stochastic and an empirical Green's function (EGF) methods are preliminarily applied to simulate strong ground motions (SGMs) at seismic stations within nuclear power plant (NPP) sites in South Korea by an assumed large earthquake with MW6.5 (scenario earthquake) on the causative fault of the 2016 Gyeongju earthquake with MW5.5 (mainshock). In the stochastic method, a ratio of spectral amplitudes of observed and simulated waveforms for the mainshock is assumed to be an adjustment factor. In the EGF method, SGMs by the mainshock are simulated assuming SGMs by the 2016 Gyeongju earthquake with MW5.0 (foreshock) as the EGF. To simulate SGMs by the scenario earthquake, a ratio of fault length to width is assumed to be 2:1 in the stochastic method, and SGMs by the mainshock are assumed to be EGF in the EGF method. The results are similar based on a bias of the simulated response spectra by the two methods, and the simulated response spectra by the two methods exceeded commonly standard design response spectra anchored at 0.3 g of NPP sites slightly at a frequency band above 4 Hz, but considerable attention to interpretation is required since it is an indirect comparison.

중진지역에 적합한 액상화 평가 생략기준 및 지진규모 보정계수에 관한 연구 (A Study on Magnitude Scaling Factors and Screening Limits of Liquefaction Potential Assessment in Moderate Earthquake Regions)

  • 박근보;박영근;최재순;김수일
    • 한국지반공학회논문집
    • /
    • 제20권7호
    • /
    • pp.127-140
    • /
    • 2004
  • 기존의 액상화 평가법은 대부분 미국, 일본, 그리고 유럽과 같이 지진 발생빈도가 높고 그로 인한 액상화 피해가 빈번한 국가에서 주도적으로 연구되어왔다. 이런 지역적 특성을 토대로 개발된 액상화 평가방법들은 높은 지진규모(M=7.5)에 바탕을 두고 있다. 국내의 경우, 1997년 실제적인 내진 연구가 시작된 이래 액상화 평가의 구체적 규정은 항만시설의 내진설계 표준서(1999)에 언급된 바 있으나 이는 문헌연구를 통해 제시된 것으로 실제적이지 못하다. 그러므로, 국내 적합한 설계기준을 작성하기 위해서는 지진피해자료의 부족을 국내 지반을 대상으로 한 동적실내시험을 통하는 것이 바람직하며, 일반적인 정현하중 진동시험 보다 실제 지진하중 재하 시험이 훨씬 효과적일 수 있다. 본 연구에서는 실제 지진파 고유의 특성을 적용한 진동삼축 시험을 통하여 상대밀도와 세립분함유량의 변화에 따른 액상화 저항강도를 산정하였다. 실험결과를 국내의 대표적인 항만지역의 지진응답 해석 결과와 비교 분석하고 중진지역에 적합한 액상화 평가의 생략기준을 제시하였다. 또한 실제 지진하중 삼축실험 결과를 이용하여 국내 여건에 적합한 지진규모 보정계수를 제안하였다.

포항지진 발생 주변지역 지질특성에 따른 저수지 취약성 해석 (Analysis of Reservoir Vulnerability Based on Geological Structure Around Pohang Earthquake)

  • 임성근;송성호;유재형
    • 한국지진공학회논문집
    • /
    • 제22권3호
    • /
    • pp.169-174
    • /
    • 2018
  • A total of 594 reservoirs (17%), which are managed by KRC, equipped with earthquake-resistant facilities whereas remaining ones did not. In addition, reservoirs were placed without the effect of geological structures (i.e., fault and lineament). Therefore, development on technique for alleviating the potential hazards by natural disasters along faults and lineaments has required. In addition, an effective reinforcement guideline related to the geological vulnerabilities around reservoirs has required. The final goal of this study is to suggest the effective maintenance for the safety of earth fill dams. A radius 2 km, based on the center of the reservoir in the study area was set as the range of vulnerability impacts of each reservoir. Seismic design, precise safety diagnosis, seismic influence and geological structure were analyzed for the influence range of each reservoir. To classify the vulnerability of geological disasters according to the fault distribution around the reservoir, evaluation index of seismic performance, precise safety diagnosis, seismic influence and geological structure were also developed for each reservoir, which were a component of the vulnerability assessment of geological disasters. As a result, the reservoir with the highest vulnerability to geological disasters in the pilot district was analyzed as Kidong reservoir with an evaluation index of 0.364. Within the radius of 100km from the epicenter of the Pohang earthquake, the number of agricultural infrastructure facilities subject to urgent inspections were 1,180 including reservoirs, pumping stations and intakes. Four reservoirs were directly damaged by earthquake among 724 agricultural reservoirs. As a result of the precise inspection and electrical resistivity survey of the reservoir after the earthquake, it was reported that cracks on the crest of reservoirs were not a cause of concern. However, we are constantly monitoring the safety of agricultural facilities by Pohang aftershocks.

역사지진 및 인공지진의 물리적 특성에 관한 연구 (Study on Physical Characteristics of Historical and Artificial Ground Acceleration)

  • 이대형;정영수;전환석
    • 한국지진공학회논문집
    • /
    • 제2권2호
    • /
    • pp.35-44
    • /
    • 1998
  • 최근의 중.소규모의 연이은 지진활동은 한반도도 지진에 대하여 안전지대는 아닌 것으로 생각되고 있으며, 1995년 일본의 Kobe 지진 대 참사는 국내에도 지진에 관한 많은 관심을 고조시키고 있다. 그러나, 국내의 구조물의 내진설계를 위한 사용되는 지진파에 대한 연구는 매우 미흡하며, 최근까지도 국내에서는 외국의 설계용 지진파를 그대로 사용하거나 설계응답스펙트럼을 이용하고 있는 실정이다. 본 논문에서는 국내지진파의 물리적 특성, 즉, 주기-빈도 분포, 확률밀도분포, Fourier Spectrum 및 응답스펙트럼을 구하여 비교.분석하였다. 또한 이상화된 인공지진파를 산출하여 이를 현재 교통량의 폭발적인 증가와 도로의 선형성을 이유로 사각을 가진 교량구조물이 많이 건설되고 있는바, 70$^{\circ}$사각슬래브교에 대한 지진해석을 수행하여 인공지진의 합리적 해석 횟수를 규명하였다.

  • PDF

지진재난 대비를 위한 건축 산업의 발전방향에 대한 고찰 (A Study for the Development Direction of Building Industry in Preparation for Earthquake Disaster)

  • 한동호;김종국
    • 문화기술의 융합
    • /
    • 제4권1호
    • /
    • pp.307-314
    • /
    • 2018
  • 2016, 2017년 연속으로 발생한 경주지진과 포항지진으로 인해 한국사회가 더 이상 지진에 대해 안전하지 않다는 점이 명백해졌다. 불행히도 한국의 건축 산업은 이제까지 지진에 대한 대비가 매우 미흡하여 많은 건물이 지진으로 인해 피해를 입었으며 다음과 같은 문제점이 존재한다. 첫째, 내진성능 확보 비율이 낮다. 둘째, 지진과 화재에 매우 취약한 필로티 구조 건물의 비중이 최근에 매우 높아졌다. 셋째, 안전성 확보를 위한 건축법 적용에서 제외되는 소규모 건축물의 비중이 너무 높다. 넷째, 관행화된 부패와 부실시공이 안전성을 저해한다. 따라서 이러한 상황에서 지진재난 대비를 위한 조치는 다음과 같다. 첫째, 지진에 취약한 건축물의 부족한 내진성능을 확보하기 위해 건물의 구조체를 보강하는 방법과 건물에 작용하는 지진하중을 경감시키는 방법을 활용한다. 둘째, 부패로 인한 부실시공을 방지하기 위해 내부고발자를 활용하고 적극적으로 보호한다. 이를 위해 내부고발자를 조직에 대한 배신자가 아니라 안전이라는 공익을 보호하기 위한 적극적 수단으로 인식해야 한다.

내진설계기준의 지반분류체계 및 설계응답스펙트럼 개선을 위한 연구 - (I) 데이터베이스 및 지반응답해석 (Site Classification and Design Response Spectra for Seismic Code Provisions - (I) Database and Site Response Analyses)

  • 조형익;;김동수
    • 한국지진공학회논문집
    • /
    • 제20권4호
    • /
    • pp.235-243
    • /
    • 2016
  • Korea is part of a region of low to moderate seismicity located inside the Eurasian plate with bedrock located at depths less than 30 m. However, the spectral acceleration obtained from site response analyses based on the geologic conditions of inland areas of the Korean peninsula are significantly different from the current Korean seismic code. Therefore, suitable site classification scheme and design response spectra based on local site conditions in the Korean peninsula are required to produce reliable estimates of earthquake ground motion. In this study, site-specific response analyses were performed at more than 300 sites with at least 100 sites at each site categories of $S_C$, $S_D$, and $S_E$ as defined in the current seismic code in Korea. The process of creating a huge database of input parameters - such as shear wave velocity profiles, normalized shear modulus reduction curves, damping curves, and input earthquake motions - for site response analyses were described. The response spectra and site coefficients obtained from site response analyses were compared with those proposed for the site categories in the current code. Problems with the current seismic design code were subsequently discussed, and the development and verifications of new site classification system and corresponding design response spectra are detailed in companion papers (II-development of new site categories and design response spectra and III-Verifications)