• Title/Summary/Keyword: Design earthquake

Search Result 2,185, Processing Time 0.028 seconds

A Comparative Study on the Earthquake Resistant Design Criteria for Cylindrical, Liquid-Storage Tanks (원통형 액체저장탱크 내진설계기준의 비교연구)

  • 국승규
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.69-75
    • /
    • 1998
  • Because the collapse of liquid-storage tank structures under earthquakes brings out substantially more damages by indirect effects(continuous losses of economy and environmental disruption due to the spillage of toxic contents or pollutants) than direct economic losses of tanks and contents, it is an urgent matter to provide earthquake resistant design criteria in order to minimize such direct/indirect damages. In this paper, as fundamental works to prepare earthquake resistant design criteria for cylindrical liquid-storage tanks, analysis methods given in the Recommendations of New Zealand and Austria are reviewed and the applicabilities and problems of the two methods are set forth by comparison of the analysis results with a numerical example.

  • PDF

Spectral Shape in Accordance with the Magnitude and Distance of Earthquakes and Its Effect on Multi-DOF Structures (지진의 규모와 거리에 따른 스펙트럼 형상과 다자유도 구조물에 대한 영향)

  • Kim, Jin Woo;Kim, Dong Kwan;Kim, Ho Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.49-57
    • /
    • 2020
  • In this study earthquake records were collected for rock conditions that do not reflect seismic amplification by soil from global earthquake databases such as PEER, USGS, and ESMD. The collected earthquake records were classified and analyzed based on the magnitude and distance of earthquakes. Based on the analyzed earthquakes, the design response spectrum shape, effective ground acceleration, and amplification ratios for each period band are presented. In addition, based on the analyzed data, the story shear force for 5F, 10F, 15F, and 20F were derived through an analysis of the elastic time history for multi-DOF structures. The results from analyzing the rock earthquake record show that the seismic load tends to be amplified greatly in the short period region, which is similar to results observed from the Gyeongju and Pohang earthquakes. In addition, the results of the multi-DOF structure analysis show that existing seismic design criteria can be underestimated and designed in the high-order mode of short- and medium-long cycle structures.

Earthquake Design and Reinforcement Countermeasure for Transmission Line and Substation (송변전설비의 내진설계 및 보강대책)

  • Min, Byeong-Wook;Kim, Kang-Kyu;Han, Byung-Jun;Park, In-Joung;Kim, Young-Dal
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.432-433
    • /
    • 2011
  • Even though Korea has very low possibility that a big earthquake occurs like in Japan, China, Taiwan and United States of America, because it is located on the interior of Eurasian Plate, the earthquake which was struck northeast Japan in March 11th, 2011 gave a big shock to Korean. And small-medium earthquakes have been observed 922 times in Korea since 1978 when an earthquake hit Hong-seong and a seismographic station started observation. Moreover, the number of quakes has been on the increase. In case a big earthquake occurs like in northeast Japan, it would be a terrible disaster for Korean power utilities and brings mega effects on Korean society and economy. So it is necessary to apply anti-earthquake design for new power facilities and to reinforce existing facilities. Therefore, this paper would present anti-earthquake design for transmission line and substation and reinforcement measures for existing facilities.

  • PDF

Investigation of the effect of weak-story on earthquake behavior and rough construction costs of RC buildings

  • Gursoy, Senol;Oz, Ramazan;Bas, Selcuk
    • Computers and Concrete
    • /
    • v.16 no.1
    • /
    • pp.141-161
    • /
    • 2015
  • A significant portion of residential areas of Turkey is located in active earthquake zones. In Turkey occurred major earthquakes in last twenty years, such as Erzincan (1992), Kocaeli and $D{\ddot{u}}zce$ (1999), $Bing{\ddot{o}}l$ (2003), Van (2011). These earthquakes have demonstrated that reinforced concrete (RC) buildings having horizontal and vertical irregularities are significantly damaged, which in turn most of them are collapsed. Architectural design and arrangement of load-bearing system have important effect on RC building since architectural design criteria in design process provide opportunity to make this type of buildings safer and economical under earthquake loads. This study aims to investigate comparatively the effects of weak story irregularity on earthquake behavior and rough construction costs of RC buildings by considering different soil-conditions given in the Turkish Earthquake Code. With this aim, Sta4-CAD program based on matrix displacement method is utilized. Considering that different story height and compressive strength of concrete, and infill walls or their locations are the variables, a set of structural models are developed to determine the effect of them on earthquake behavior and rough construction costs of RC buildings. In conclusion, some recommendations and results related to making RC buildings safer and more economical are presented by comparing results obtained from structural analyses.

An investigation on the maximum earthquake input energy for elastic SDOF systems

  • Merter, Onur
    • Earthquakes and Structures
    • /
    • v.16 no.4
    • /
    • pp.487-499
    • /
    • 2019
  • Energy-based seismic design of structures has gradually become prominent in today's structural engineering investigations because of being more rational and reliable when it is compared to traditional force-based and displacement-based methods. Energy-based approaches have widely taken place in many previous studies and investigations and undoubtedly, they are going to play more important role in future seismic design codes, too. This paper aims to compute the maximum earthquake energy input to elastic single-degree-of-freedom (SDOF) systems for selected real ground motion records. A data set containing 100 real ground motion records which have the same site soil profiles has been selected from Pacific Earthquake Research (PEER) database. Response time history (RTH) analyses have been conducted for elastic SDOF systems having a constant damping ratio and natural periods of 0.1 s to 3.0 s. Totally 3000 RTH analyses have been performed and the maximum mass normalized earthquake input energy values for all records have been computed. Previous researchers' approaches have been compared to the results of RTH analyses and an approach which considers the pseudo-spectral velocity with Arias Intensity has been proposed. Graphs of the maximum earthquake input energy versus the maximum pseudo-spectral velocity have been obtained. The results show that there is a good agreement between the maximum input energy demands of RTH analysis and the other approaches and the maximum earthquake input energy is a relatively stable response parameter to be used for further seismic design and evaluations.

Evaluation of Response Modification Factore for Earthquake Resistant Design of Moment-Resisting Steel Frames (모멘트-연성 강구조물의 내진설계를 위한 반응수정계수의 평가)

  • 송종걸
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.201-208
    • /
    • 1997
  • In most seismic codes such as the Uniform Building Code(UBC), the response modification factor(or the force reduction factor)is used to reflect the capability of a structure in dissipating energy through inelastic behavior. The response modification factor is assigned according to structural system type. Ductile systems such as special moment-resisting steel frames are assigned larger values of the response modification factor, and are consequently designed for smaller seismic design forces. Therefore, structural damage may occur during a severe earthquake. To ensure safety of the structures, the suitability of the response modification factor used in aseismic design procedures shall be evaluated. The object of this study is to develop a method for the evaluating of the response modification factor. The validity of the evaluating method has been examined for several cases of different structures and different earthquake excitations.

  • PDF

No Collapse Design for Typical Bridges (일반교량의 붕괴방지설계)

  • Kook, Seung-Kyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.3
    • /
    • pp.163-172
    • /
    • 2014
  • The purpose of earthquake resistant design for typical bridges is the No Collapse Design and the Earthquake Resistant Design Part of Roadway Bridge Design Code provides a design process to construct the Ductile Failure Mechanism for the bridge structure. However, if it is not practical to provide the Ductile Failure Mechanism due to structure types or site conditions, the Brittle Failure Mechanism is an alternative way to get the No Collapse Design. As well as the existing design process constructing the Ductile Failure Mechanism, the Earthquake Resistant Design Part provides a ductility-based design process as an appendix, which is prepared for bridges with reinforced concrete piers. According to the new design process, designer determines a required response modification factor for substructure and transverse reinforcement for confinement therefrom. In this study, a typical bridge with steel bearing connections and reinforced concrete piers is selected for which the existing as well as the ductility-based design processes are applied and different results from the two design processes are identified. Based on the results, an earthquake resistant design procedure is proposed in which designers should consider the two design processes.

Performance Based Seismic Design State of Practice, 2012 Manila, Philippines

  • Sy, Jose A.;Anwar, Naveed;HtutAung, Thaung;Rayamajhi, Deepak
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.3
    • /
    • pp.203-209
    • /
    • 2012
  • The purpose of this paper is to present the state of practice being used in the Philippines for the performance-based seismic design of reinforced concrete tall buildings. Initially, the overall methodology follows "An Alternative Procedure for Seismic Analysis and Design of Tall Buildings Located in the Los Angeles Region, 2008", which was developed by Los Angeles Tall Buildings Structural Design Council. After 2010, the design procedure follows "Tall Buildings Initiative, Guidelines for Performance-Based Seismic Design of Tall Buildings, 2010" developed by Pacific Earthquake Engineering Research Center (PEER). After the completion of preliminary design in accordance with code-based design procedures, the performance of the building is checked for serviceable behaviour for frequent earthquakes (50% probability of exceedance in 30 years, i.e,, with 43-year return period) and very low probability of collapse under extremely rare earthquakes (2% of probability of exceedance in 50 years, i.e., 2475-year return period). In the analysis, finite element models with various complexity and refinements are used in different types of analyses using, linear-static, multi-mode pushover, and nonlinear-dynamic analyses, as appropriate. Site-specific seismic input ground motions are used to check the level of performance under the potential hazard, which is likely to be experienced. Sample project conducted using performance-based seismic design procedures is also briefly presented.

A Study on the Relationship between Earthquake Damage and the Design Eccentricity of Building with Planar Irregularity (평면 비정형 건물의 설계편심과 지진 손상도의 상관관계에 관한 연구)

  • Lee, Kwang Ho;Jeong, Seong Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.5
    • /
    • pp.237-243
    • /
    • 2013
  • In the Korean Building Code (KBC), the Design Eccentricity involves the torsional amplification factor (TAF), and the inherent and accidental eccentricities. When a structure of less than 6-stories and assigned to seismic design category C or D is designed using equivalent static analysis method, both KBC-2006 and KBC-2009 use the TAF but apply different calculation methods for the of design eccentricity. The design eccentricity in KBC-2006 is calculated by multiplying the sum of inherent eccentricity and accidental eccentricity at each level by a TAF but that in KBC-2009 is calculated by multiplying only the accidental eccentricity by a TAF. In this paper, the damage indices of a building with planar structural irregularity designed by different design eccentricities are compared and the relationship between the earthquake damage and design eccentricity of the building is evaluated. On the basis of this study, the increment of design eccentricity results in the decrement of final eccentricity and global damage index of structure. It is observed that design eccentricity in KBC-2006 reduces the vulnerability of torsional irregular building compared to design eccentricity in KBC-2009.

Direct Inelastic Earthquake Design Using Secant Stiffness (할선강성을 이용한 직접비탄성내진설계)

  • 박홍근;엄태성
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.1
    • /
    • pp.17-27
    • /
    • 2004
  • A new earthquake design method performing iterative calculations using secant stiffness was developed. The proposed design method has the advantages of convenience and stability in numerical analysis because it uses elastic analysis. At the same time, the proposed design method can accurately estimate the strength and ductility demands on the members because it performs the analysis on the inelastic behavior of structure using iterative calculation. In the present study, the procedure of the proposed design method was established, and a computer program incorporating the proposed method was developed. Design examples using the proposed method were presented, and its advantages were presented by the comparisons with existing design methods using elastic or inelastic analysis. The proposed design method, as an integrated method of analysis and design, can address the earthquake design strategy devised by the engineer. such as ductility limit on each member, the design concept of strong column - weak beam, and etc. In addition, through iterative calculations on the structure preliminarily designed only with member sizing, the strength and ductility demands of each member can be directly calculated so as to satisfy the given design strategy. As the result. economical and safe design can be achieved.