• Title/Summary/Keyword: Design classification

Search Result 2,274, Processing Time 0.023 seconds

Classification Characteristics of High Efficient Turbo Classifier (고성능 터보분급기의 분급 특성)

  • Song, Dong-Keun;Hong, Won-Seok;Han, Bang-Woo;Kim, Hak-Joon;Huh, Byong-Soo;Kim, Yong-Jin
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2423-2428
    • /
    • 2008
  • A turbo classifier having a rotating rotor of two stage classification region has been developed to have a cut size of 1 micro meter. Particle number concentrations were counted using Aerosol Particle Sizer (APS, TSI co., USA) at inlet and outlet of the classifier. Partial classification efficiency was obtained at various rotation speeds, total flow rates, and feed rates of powders, and classification characteristic depending on design parameters was discussed. Classification performance was enhanced as rotation speed of rotor increased and total flow rate decreased.

  • PDF

Design of One-Class Classifier Using Hyper-Rectangles (Hyper-Rectangles를 이용한 단일 분류기 설계)

  • Jeong, In Kyo;Choi, Jin Young
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.5
    • /
    • pp.439-446
    • /
    • 2015
  • Recently, the importance of one-class classification problem is more increasing. However, most of existing algorithms have the limitation on providing the information that effects on the prediction of the target value. Motivated by this remark, in this paper, we suggest an efficient one-class classifier using hyper-rectangles (H-RTGLs) that can be produced from intervals including observations. Specifically, we generate intervals for each feature and integrate them. For generating intervals, we consider two approaches : (i) interval merging and (ii) clustering. We evaluate the performance of the suggested methods by computing classification accuracy using area under the roc curve and compare them with other one-class classification algorithms using four datasets from UCI repository. Since H-RTGLs constructed for a given data set enable classification factors to be visible, we can discern which features effect on the classification result and extract patterns that a data set originally has.

A Suggestion of a New Rock Mass Classification System (새로운 암반분류법의 제안)

  • Kim, Min-Guon;Lee, Yeong-Saeng
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.11
    • /
    • pp.43-53
    • /
    • 2008
  • The rock mass classification systems used in Korea are not standardized. And also the criteria values differ between agencies. So different opinions for rock mass classification can occur among engineers who participate in each design process. In this research, a new rock mass classification system was suggested to correct these problems. For this purpose, the criteria used in the Korean agencies were compared with the criteria used in foreign agencies and standard criteria were selected. Thereafter rational and objective criteria values were suggested quantitatively for the new classification system.

Design of Low Complexity Human Anxiety Classification Model based on Machine Learning (기계학습 기반 저 복잡도 긴장 상태 분류 모델)

  • Hong, Eunjae;Park, Hyunggon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.9
    • /
    • pp.1402-1408
    • /
    • 2017
  • Recently, services for personal biometric data analysis based on real-time monitoring systems has been increasing and many of them have focused on recognition of emotions. In this paper, we propose a classification model to classify anxiety emotion using biometric data actually collected from people. We propose to deploy the support vector machine to build a classification model. In order to improve the classification accuracy, we propose two data pre-processing procedures, which are normalization and data deletion. The proposed algorithms are actually implemented based on Real-time Traffic Flow Measurement structure, which consists of data collection module, data preprocessing module, and creating classification model module. Our experiment results show that the proposed classification model can infers anxiety emotions of people with the accuracy of 65.18%. Moreover, the proposed model with the proposed pre-processing techniques shows the improved accuracy, which is 78.77%. Therefore, we can conclude that the proposed classification model based on the pre-processing process can improve the classification accuracy with lower computation complexity.

A Design of Control Chart for Fraction Nonconforming Using Fuzzy Data (퍼지 데이터를 이용한 불량률(p) 관리도의 설계)

  • 김계완;서현수;윤덕균
    • Journal of Korean Society for Quality Management
    • /
    • v.32 no.2
    • /
    • pp.191-200
    • /
    • 2004
  • Using the p chart is not adequate in case that there are lots of data and it is difficult to divide into products conforming or nonconforming because of obscurity of binary classification. So we need to design a new control chart which represents obscure situation efficiently. This study deals with the method to performing arithmetic operation representing fuzzy data into fuzzy set by applying fuzzy set theory and designs a new control chart taking account of a concept of classification on the term set and membership function associated with term set.

Modeling and Design of Intelligent Agent System

  • Kim, Dae-Su;Kim, Chang-Suk;Rim, Kee-Wook
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.2
    • /
    • pp.257-261
    • /
    • 2003
  • In this study, we investigated the modeling and design of an Intelligent Agent System (IAS). To achieve this goal, we introduced several kinds of agents that exhibit intelligent features. These are the main agent, management agent, watcher agent, report agent and application agent. We applied the intelligent agent concept to two different application fields, i.e. the intelligent agent system for pattern classification and the intelligent agent system for bank asset management modeling.

Neural Hamming MAXNET Design for Binary Pattern Classification (2진 패턴분류를 위한 신경망 해밍 MAXNET설계)

  • 김대순;김환용
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.12
    • /
    • pp.100-107
    • /
    • 1994
  • This article describes the hardware design scheme of Hamming MAXNET algorithm which is appropriate for binary pattern classification with minimum HD measurement between stimulus vector and storage vector. Circuit integration is profitable to Hamming MAXNET because the structure of hamming network have a few connection nodes over the similar neuro-algorithms. Designed hardware is the two-layered structure composed of hamming network and MAXNET which enable the characteristics of low power consumption and fast operation with biline volgate sensing scheme. Proposed Hamming MAXNET hardware was designed as quantize-level converter for simulation, resulting in the expected binary pattern convergence property.

  • PDF