• Title/Summary/Keyword: Design Verification

Search Result 2,960, Processing Time 0.032 seconds

Design and Implementation of Visitor Access Control System using Deep learning Face Recognition (딥러닝 얼굴인식 기술을 활용한 방문자 출입관리 시스템 설계와 구현)

  • Heo, Seok-Yeol;Kim, Kang Min;Lee, Wan-Jik
    • Journal of Digital Convergence
    • /
    • v.19 no.2
    • /
    • pp.245-251
    • /
    • 2021
  • As the trend of steadily increasing the number of single or double household, there is a growing demand to see who is the outsider visiting the home during the free time. Various models of face recognition technology have been proposed through many studies, and Harr Cascade of OpenCV and Hog of Dlib are representative open source models. Among the two modes, Dlib's Hog has strengths in front of the indoor and at a limited distance, which is the focus of this study. In this paper, a face recognition visitor access system based on Dlib was designed and implemented. The whole system consists of a front module, a server module, and a mobile module, and in detail, it includes face registration, face recognition, real-time visitor verification and remote control, and video storage functions. The Precision, Specificity, and Accuracy according to the change of the distance threshold value were calculated using the error matrix with the photos published on the Internet, and compared with the results of previous studies. As a result of the experiment, it was confirmed that the implemented system was operating normally, and the result was confirmed to be similar to that reported by Dlib.

Dredging Material High Efficiency Transport Technology Test by Using the Electro Magnetic Field and Development of the Technical Design Manual (전자기장을 이용한 준설토 고효율 이송기술 실증 및 기술 지침 개발)

  • Kim, Dong-Chule;Kim, Yu-Seung;Yea, Chan-Su;Kim, Sun-Bin;Park, Seung-Min
    • Journal of Coastal Disaster Prevention
    • /
    • v.5 no.4
    • /
    • pp.173-182
    • /
    • 2018
  • As the research about increasing the efficiency of dredging soil transport, the technology, which reduce the friction between pipe wall and fluid in the pipe and disturbed generating pipe blockage, has been developed. So for the purpose of applying this technology to real construction site, main test has been tried at the real scale test in field. As a test result, this paper will show 30% flow efficiency increasing by permitted electro magnetic force to the pipe. And test result was evaluated as a ultra sonic velocity profiler. To propose the design technique and the execution manual of the high efficiency dredging material transport technic, this research have confirmed flow status changing depending on a soil material kind under electro-magnetic field and analyze the effect of electro-magnetic field which affects to each dredged soil material transportation. For achieving this research, EMF(Electro-Magnetic Field) generator is installed on the dredger(20,000HP) and through monitored flow status, dredging soil flow rate and sampled material specification is confirmed. Also dredger operating condition is measured and dredger power for soil transportation, hydraulic gradient and flow rate are compared, as transportation efficiency is calculated by this parameter, it is possible to check transportation efficiency improvement depending on each dredged soil material under electro-magnetic field. To verify the technique of dredged soil transfer using electromagnetic field, which is the core technique of the high efficiency dredged soil transfer, and the technique of expert system for pipeline transfer and the flow state. This could lead to a verification of transfer efficiency according to the characteristics of the dredged soil (sand, clay, silt) and the transfer distance (5km, 10km, 15km), which is planned to be used for a technology development of pump power reduction and long-distance transfer applying the high efficiency dredged soil transfer technology.

A Study on the Analysis of the Relaxation Area and the Improvement Effect of the Ground by Road Subsidence (지하연속벽 배면 도로의 지반침하에 따른 이완영역분석방법과 지반 보강 효과검증에 관한 연구)

  • Lee, Hyoung Kyu;Lee, Yong-Sun
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.1
    • /
    • pp.29-41
    • /
    • 2021
  • Although underground works are essential to use underground spaces in urban areas efficiently, various damages caused by constructions have often occurred, making them major social problems. Since 2018, it is stipulated in the Special Act on Underground Safety Management that appropriate construction methods must be used in the design stage to prevent various damage cases. This Special Act includes establishing an area subject to underground safety impact assessment, analysis of ground and geological status, review of effects caused by changes in groundwater, review of ground safety, and establishment of measures to secure underground safety. This study area consists of various strata in order of landfill, sedimentary silt, sedimentary sand, sedimentary gravel, weathering zone, and foundation rock. Also, the slurry wall, a highly rigid underground continuous wall, was chosen as a construction method to consider high water table distribution and minimize the influence of the surroundings in this area. However, ground subsidence occurred on the road nearby in December 2019 due to the inflow of loosening soil to the construction area. Thus, several types of site investigations were conducted to suggest an appropriate analysis method and to find out loosed ground behavior and its area for the subsided site. As a result, new design soil properties were re-calculated, and the reinforcement measures were proposed through analytical verification.

Basic Characteristic Verification of High-damping Laminated Solar Panel with Viscoelastic Adhesive Tape for 6U CubeSat Applications (점탄성 테이프를 적용한 6U 큐브위성용 고댐핑 적층형 태양전지판의 기본 특성 검증)

  • Kim, Su-Hyeon;Kim, Hongrae;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.1
    • /
    • pp.86-94
    • /
    • 2021
  • PCB-based deployable solar panel is mainly used for CubeSat due to its lightweight and easy of electrical connection. However, as the size of solar panel increases, there is a limit to ensuring the structural safety of solar cells due to excessive dynamic displacement under launch vibration environment. In previous mechanical designs, for the minimization of dynamic deflection, panel stiffness is increased by applying additional stiffeners made of various materials such as aluminum or composite. However, it could have disadvantages for CubeSat design requirements due to limited mass and volumes. In this study, a high-damping 6U solar panel was proposed. It had superior damping characteristic with a multi-layered stiffener laminated with viscoelastic acrylic tapes. Basic characteristics of this solar panel were measured through free-vibration tests. Design effectiveness of the solar panel was validated through qualification-level launch vibration test. Based on test results, vibration characteristics of a typical PCB solar panel and the high-damping laminated solar panel were predicted and a comparative analysis was performed.

A Study on the Management of Blended Learning at School Library: Focusing on Reading Club Program Linked with Free Semester System (학교도서관의 블렌디드 러닝 운영에 관한 연구 - 자유학기제 연계 독서동아리 프로그램을 중심으로 -)

  • Song, Jiae
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.55 no.2
    • /
    • pp.179-200
    • /
    • 2021
  • This study is aimed at analyzing cases of management focusing on a reading club using the blended learning at school library and the relevant programs of the free semester system. Therefore, the study has designed a research model for the blended-based management of school libraries, and cases of activities of reading clubs at school libraries for participants in programs linked with the free semester system have been analyzed. As a result of the analysis, first, the confidence level was satisfied in all areas of stability, consistency, predictability and verification on confidence level for related variables of the research model. Second, a meaningful relation has been verified in the correlation analysis between the blended activities and activities of the career search and the career design. Third, as a meaningful static effect has been shown in the contact-free activities in the areas of activities of the blended learning and activities of the career search and the career design, it was verified that programs linked with reading clubs of the free semester system have higher positive effects in the contact-free activities. Last but not least, programs related to local governments to support reading clubs at school libraries have been presented, and management of the blended learning at school libraries has been suggested.

Verification of Weight Effect Using Actual Flight Data of A350 Model (A350 모델의 비행실적을 이용한 중량 효과 검증)

  • Jang, Sungwoo;Yoo, Jae Leame;Yo, Kwang Eui
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.1
    • /
    • pp.13-20
    • /
    • 2022
  • Aircraft weight is an important factor affecting performance and fuel efficiency. In the conceptual design stage of the aircraft, the process of balancing cost and weight is performed using empirical formulas such as fuel consumption cost per weight in estimating element weight. In addition, when an airline operates an aircraft, it promotes fuel efficiency improvement, fuel saving and carbon reduction through weight management activities. The relationship between changes in aircraft weight and changes in fuel consumption is called the cost of weight, and the cost of weight is used to evaluate the effect of adding or reducing weight to an aircraft on fuel consumption. In this study, the problems of the existing cost of weight calculation method are identified, and a new cost of weight calculation method is introduced to solve the problem. Using Breguet's Range Formula and actual flight data of the A350-900 aircraft, two weight costs are calculated based on take-off weight and landing weight. In conclusion, it was suggested that it is reasonable to use the cost of weight based on the take-off weight and the landing weight for other purposes. In particular, the cost of weight based on the landing weight can be used as an empirical formula for estimating element weight and optimizing cost and weight in the conceptual design stage of similar aircraft.

Structural Behavior of Reinforced Concrete Members Subjected to Axial and Blast Loads Using Nonlinear Dynamic Analysis (비선형 동적해석을 이용한 축하중과 폭발하중을 동시에 받는 철근콘크리트 부재의 구조 거동 분석)

  • Lee, Seung-Hoon;Kim, Han-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.3
    • /
    • pp.141-148
    • /
    • 2022
  • In this study, the structural behavior of reinforced concrete members under simultaneous axial and blast loads was analyzed. Nonlinear dynamic analysis verification was performed using the experimental data of panels under fundamental blast load as well as those of reinforced concrete columns subjected to axial and blast loads. Because Autodyn is a program designed only for dynamic analysis, an analysis process is devised to simulate the initial stress state of members under static loads, such as axial loads. A total of 80 nonlinear dynamic finite element analysis procedures were conducted by selecting parameters corresponding to axial load ratios and scaled distances ranging 0%~70% and 1.1~2.0 (depending on the equivalent of TNT), respectively. The structural behavior was compared and analyzed with the corresponding degree of damage and maximum lateral displacement through the changes in axial load ratio and scaled distance. The results show that the maximum lateral displacement decreases due to the increase in column stiffness under axial loads. In view of the foregoing, the formulated analysis process is anticipated to be used in developing blast-resistant design models where structural behavior can be classified into three areas considering axial load ratios of 10%~30%, 30%~50%, and more than 50%.

Thermal-hydraulic research on rod bundle in the LBE fast reactor with grid spacer

  • Liu, Jie;Song, Ping;Zhang, Dalin;Wang, Shibao;Lin, Chao;Liu, Yapeng;Zhou, Lei;Wang, Chenglong;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2728-2735
    • /
    • 2022
  • The research on the flow and heat transfer characteristics of lead bismuth(LBE) is significant for the thermal-hydraulic calculation, safety analysis and practical application of lead-based fast reactors(LFR). In this paper, a new CFD model is proposed to solve the thermal-hydraulic analysis of LBE. The model includes two parts: turbulent model and turbulent Prandtl, which are the important factors for LBE. In order to find the best model, the experiment data and design of 19-pin hexagonal rod bundle with spacer grid, undertaken at the Karlsruhe Liquid Metal Laboratory (KALLA) are used for CFD calculation. Furthermore, the turbulent model includes SST k - 𝜔 and k - 𝜀; the turbulent Prandtl includes Cheng-Tak and constant (Prt =1.5,2.0,2.5,3.0). Among them, the combination between SST k - 𝜔 and Cheng-Tak is more suitable for the experiment. But in the low Pe region, the deviation between the experiment data and CFD result is too much. The reason may be the inlet-effect and when Pe is in a low level, the number of molecular thermal diffusion occupies an absolute advantage, and the buoyancy will enhance. In order to test and verify versatility of the model, the NCCL performed by the Nuclear Thermal-hydraulic Laboratory (Nuthel) of Xi'an Jiao tong University is used for CFD to calculate. This paper provides two verification examples for the new universal model.

Development of the Sustainable Dietary Life Teaching-Learning Plans to Implement the Sustainable Development Goals (SDGs) (지속가능발전목표(SDGs) 이행을 위한 지속가능한 식생활 교수·학습 과정안 개발)

  • Lee, Jung Eun;Yu, Nan Sook
    • Journal of Korean Home Economics Education Association
    • /
    • v.34 no.3
    • /
    • pp.149-167
    • /
    • 2022
  • The purpose of this study was to identify learning topics linked to Sustainable Development Goals(SDGs) in the dietary life unit of middle school technology and home economics textbooks and to develop teaching-learning plans and learning materials to verify the feasibility and field suitability. This study was carried out through analysis, design, development, and evaluation stages, and the results are as follows. First, in the analysis stage, the dietary life contents of the five home economics textbooks written based on the 2015 revised curriculum were analyzed, and dietary life-related goals were extracted from the 169 SDG targets to reorganize the learning topics linked to the contents of the textbooks. Second, in the design stage, the overall goal of the entire class was set and each session was designed by selecting the learning goals, learning topics, and learning contents, reflecting the SDGs related to the session to be developed. Based on the analyses of textbooks and the SDGs related to dietary life, the themes of 'desirable eating habits of adolescents', 'food production', 'food distribution', and 'food consumption and disposal' were extracted. Third, in the development stage, a total of 11 teaching-learning plans and student worksheets were developed, and an evaluation sheet was developed for expert verification. Fourth, in the evaluation stage, the feasibility and field suitability of the teaching-learning plans were verified by 5 home economics teachers. Learning goals, learning contents, connectivity to related SDGs, and feasibility of teaching-learning plan were evaluated, and based on the assessment results, teaching-learning plans were revised.

Delphi Research on Usability Test Framework of Metaverse Platform - Case of Roblox, Zepeto, and Gathertown (메타버스 플랫폼 사용성 평가체계 구축에 관한 델파이연구 - 로블록스, 제페토, 게더타운 사례를 중심으로)

  • Lee, Han Jin;Gu, Hyun Hee
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.9
    • /
    • pp.179-193
    • /
    • 2022
  • Amid the explosive growth of various metaverse platforms, there is no unified indicator to measure, analyze, and evaluate based on customer experience. Therefore, the usability evaluation factors in metaverse were identified through a heuristic methodology and literature review, to evaluate the metaverse, a two-to three-dimensional virtual world platform. A measurable system was established by subdividing 20 items in 5 fields, including user control, information structure, design and content, and usage environment, derived through Delphi technique. Based on this, after experiencing the actual contents of major metaverse platforms such as Roblox and Zepeto, usability was evaluated and comparative verification was conducted. As a result, it was estimated that metaverse user experience could be improved as its utility was derived relatively high in terms of user control and content. This study constitutes a theoretical contribution by extending the usability evaluation system, which has been widely used in the field of service design, to the fields of extended reality and mixed reality. At the same time, it has practical key findings of providing basic judgment standards to stakeholders in the metaverse field, as well as policy implications for digital capability enhancement and industry revitalization.