• Title/Summary/Keyword: Design Test Evaluation

Search Result 2,817, Processing Time 0.029 seconds

Can Myofascial Release Techniques Reduce Stress Hormones in the Subject of Short Hamstring Syndrome? A Pilot Study

  • Cho, Sunghak
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.11 no.4
    • /
    • pp.2237-2243
    • /
    • 2020
  • Background: The myofascial release technique is known to be an effective technique for increasing posterior fascia flexibility in short hamstring syndrome (SHS) subjects. But therapeutic mechanism of myofascial relaxation remains unclear. Recently, the theory of autonomic nervous system domination has been raised, however, a proper study to test the theory has not been conducted. Objectives: To investigate whether the application of the myofascial release technique can induce changes in the autonomic nervous system and affect the secretion of stress hormones and myofascial relaxation. Design: Quasi-experimental study. Methods: Twenty-four subjects with SHS were randomly divided into two groups. In the experimental group, the suboccipital muscle inhibition (SMI) technique was applied to the subjects for 4 min in supine position, and in the control group, the subjects were lying in the supine position only. A forward flexion distance (FFD) was conducted, blood pressure, heart rate, and cortisol levels were measured before and after the intervention and 30 min after intervention to determine myofascial relaxation and stress hormone levels. The evaluation was conducted separately in blind by an evaluator. Results: A FFD decreased in the experimental group, no change in cortisol was observed. On the contrary, a decrease in cortisol appeared in the control group after 30 minutes. Conclusion: The myofascial release technique is an effective treatment to increase the range of motion through posterior superior myofascial chain, but there is no evidence that myofascial release technique can control the autonomic nervous system.

A Comparative Evaluation of Closed and Open Kinetic Exercises in the Management of Chronic Ankle Instability

  • Jung, Namjin
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.11 no.4
    • /
    • pp.2212-2220
    • /
    • 2020
  • Background: Repetitive damage to the ankle joint causes chronic ankle instability, and studies comparing the effects of exercise in open and closed chains as a treatment method are very rare. Objectives: To investigate the effects of open and closed kinetic exercises on muscle activity and dynamic balance of ankle joint in adults with chronic ankle instability. Design: Single-blind randomized controlled trial. Methods: The selected 30 subjects are randomly divided into open kinetic chain exercise experimental group (EGI, n=10), closed kinetic chain exercise experimental group (EGII, n=10), and stretching control group (CG, n=10). Open and closed kinetic exercises lasted 30 minutes three times a week for six weeks and stretching exercises performed four actions for 20 seconds and five sets. The measurement tools using surface electromyography to measure muscle activity in the ankle joint. The dynamic balance of the ankle was evaluated using the Y-Balance test. Results: Following the intervention, closed and open kinetic chain exercise group showed significant difference in tibialis anterior and gastrocnemius muscle activity and dynamic balance (P<.05). However, no significant difference in tibialis anterior and gastrocnemius muscle activity and dynamic balance between closed and open kinetic chain exercise group (P<.05). Conclusion: This study provides evidence that closed and open kinetic chain exercise can be presented as an effective exercise for the muscle activity of ankle muscle and dynamic balance of the subject with chronic ankle instability.

Web Hypermedia Resources Reuse and Integration for On-Demand M-Learning

  • Berri, Jawad;Benlamri, Rachid;Atif, Yacine;Khallouki, Hajar
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.1
    • /
    • pp.125-136
    • /
    • 2021
  • The development of systems that can generate automatically instructional material is a challenging goal for the e-learning community. These systems pave the way towards large scale e-learning deployment as they produce instruction on-demand for users requesting to learn about any topic, anywhere and anytime. However, realizing such systems is possible with the availability of vast repositories of web information in different formats that can be searched, reused and integrated into information-rich environments for interactive learning. This paradigm of learning relieves instructors from the tedious authoring task, making them focusing more on the design and quality of instruction. This paper presents a mobile learning system (Mole) that supports the generation of instructional material in M-Learning (Mobile Learning) contexts, by reusing and integrating heterogeneous hypermedia web resources. Mole uses open hypermedia repositories to build a Learning Web and to generate learning objects including various hypermedia resources that are adapted to the user context. Learning is delivered through a nice graphical user interface allowing the user to navigate conveniently while building their own learning path. A test case scenario illustrating Mole is presented along with a system evaluation which shows that in 90% of the cases Mole was able to generate learning objects that are related to the user query.

A Study on the Agile Approach in Battlefield Management Information System R&D Project in Korea Military (국방 전장관리정보체계 연구개발사업의 애자일 적용 방안 연구)

  • Yun, SungHyun;Lim, GyooGun
    • Journal of Information Technology Services
    • /
    • v.20 no.1
    • /
    • pp.41-54
    • /
    • 2021
  • The SW-centered battlefield management information system R&D project takes a long period of 5-10 years or more by applying a complex and rigid batch acquisition strategy. In order to solve this problem, it is necessary to institutionalize a rapid and flexible battlefield management information system R&D project management procedure applying agile development methodology, and a government project management organization and contract management method to support it In this study, we analyzed the case of applying the Agile development method centered on Scrum to the US SW-centered weapon system R&D project and the characteristics and problems of the battlefield management information system R&D project in Korea, and suggested improvement measures as follows. First, the battlefield management information system R&D model applies the hybrid development method, and the system requirements analysis and system structure design use the existing waterfall development procedure, and the agile method is applied from the SW requirements analysis to the system integration stage. Second, flexible adjustment of performance, schedule, and cost by organizing an Agile IPT in which military (requirements) - DAPA (project management) - developer - functional specialized organizations (test and evaluation, quality, government research institutes, etc.) participate. Third, improving the Basic Order Agreement so that it can be applied to agile R&D.

Comparative evaluation of the fitness of anterior and posterior interim crowns fabricated by additive manufacturing (적층가공 방식으로 제작한 전치와 구치 임시보철물의 적합도 비교)

  • Park, Young-Dae;Kang, Wol
    • Journal of Technologic Dentistry
    • /
    • v.43 no.4
    • /
    • pp.153-159
    • /
    • 2021
  • Purpose: The purpose of this study was to assess the fitness of anterior and posterior interim crowns fabricated by three different additive manufacturing technologies. Methods: The working model was digitized, and single crowns (maxillary right central incisor and maxillary right first molar) were designed using computer-aided design software (DentalCad 2.2; exocad). On each abutment, interim crowns (n=60) were fabricated using three types of additive manufacturing technologies. Then, the abutment appearance and internal scan data of the interim crown was obtained using an intraoral scanner. The fitness of the interim crowns were evaluated by using the superimposition of the three-dimensional scan data (Geomagic Control X; 3D Systems). The one-way analysis of variance and Tukey posterior test were used to compare the results among groups (α=0.05). Results: A significant difference was found in the fitness of the interim crowns according to the type of additive manufacturing technology (p<0.05). The posterior interim crown showed smaller root mean square value than the anterior interim crown. Conclusion: Since the fitness of the posterior interim crown produced by three types of additive manufacturing technology were all within clinically acceptable range (<120 ㎛), it can be sufficiently used for the fabrication of interim crowns.

Mobile remote assistant robot using flex sensor and mecanum wheel (플렉스 센서와 메카넘 휠을 사용한 이동식 원격 작업보조 로봇)

  • Yoon, DongKwan;Park, CheolYoung
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.2
    • /
    • pp.53-59
    • /
    • 2022
  • In this paper, a mobile robot capable of remote control is designed in consideration of the user's various work environments. Specifically, a mobile remote work robot that moves in a predetermined direction and can perform a series of tasks in synchronization with the user's hand movements, and a control system and control method for controlling the robot were proposed. It was implemented using a robot hand and a wheel for movement to assist in tasks such as transporting dangerous goods or heavy goods. In order to evaluate the performance of the developed robot, the maximum weight that can be carried by the robot hand and the movable inclination of the robot were tested, and the test evaluation results satisfied most of the targeted design specifications.

Ground Deformation Evaluation during Vertical Shaft Construction through Digital Image Analysis

  • Woo, Sang-Kyun;Woo, Sang Inn;Kim, Joonyoung;Chu, Inyeop
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.2
    • /
    • pp.285-293
    • /
    • 2021
  • The construction of underground structures such as power supply lines, communication lines, utility tunnels has significantly increased worldwide for improving urban aesthetics ensuring citizen safety, and efficient use of underground space. Those underground structures are usually constructed along with vertical cylindrical shafts to facilitate their construction and maintenance. When constructing a vertical shaft through the open-cut method, the walls are mostly designed to be flexible, allowing a certain level of displacement. The earth pressure applied to the flexible walls acts as an external force and its accurate estimation is essential for reasonable and economical structure design. The earth pressure applied to the flexible wall is closely interrelated to the displacement of the surrounding ground. This study simulated stepwise excavation for constructing a cylindrical vertical shaft through a centrifugal model experiment. One quadrant of the axisymmetric vertical shaft and the ground were modeled, and ground excavation was simulated by shrinking the vertical shaft. The deformation occurring on the entire ground during the excavation was continuously evaluated through digital image analysis. The digital image analysis evaluated complex ground deformation which varied with wall displacement, distance from the wall, and ground depth. When the ground deformation data accumulate through the method used in this study, they can be used for developing shaft wall models in future for analyzing the earth pressure acting on them.

A Study on the Development of Adaptive Learning System through EEG-based Learning Achievement Prediction

  • Jinwoo, KIM;Hosung, WOO
    • Fourth Industrial Review
    • /
    • v.3 no.1
    • /
    • pp.13-20
    • /
    • 2023
  • Purpose - By designing a PEF(Personalized Education Feedback) system for real-time prediction of learning achievement and motivation through real-time EEG analysis of learners, this system provides some modules of a personalized adaptive learning system. By applying these modules to e-learning and offline learning, they motivate learners and improve the quality of learning progress and effective learning outcomes can be achieved for immersive self-directed learning Research design, data, and methodology - EEG data were collected simultaneously as the English test was given to the experimenters, and the correlation between the correct answer result and the EEG data was learned with a machine learning algorithm and the predictive model was evaluated.. Result - In model performance evaluation, both artificial neural networks(ANNs) and support vector machines(SVMs) showed high accuracy of more than 91%. Conclusion - This research provides some modules of personalized adaptive learning systems that can more efficiently complete by designing a PEF system for real-time learning achievement prediction and learning motivation through an adaptive learning system based on real-time EEG analysis of learners. The implication of this initial research is to verify hypothetical situations for the development of an adaptive learning system through EEG analysis-based learning achievement prediction.

Dynamic rod worth measurement method based on eqilibrium-kinetics status

  • Lee, Eun-Ki;Jo, YuGwon;Lee, Hwan-Soo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.781-789
    • /
    • 2022
  • KHNP had licensed Dynamic Control rod Reactivity Measurement (DCRM) method using detector current signals of PWRs in 2006. The method has been applied to all PWRs in Korea for about 15 years successfully. However, the original method was inapplicable to PWRs using low-sensitivity integral fission chamber as ex-core detectors because of their pulse pile-up and the nonlinearity of the mean-square voltage at low power region. Therefore, to overcome this disadvantage, a modified method, DCRM-EK, was developed using kinetics behavior after equilibrium condition where the pulse counts maintain the maximum value before pulse pile-up. Overall measurement, analysis procedure, and related computer codes were changed slightly to reflect the site test condition. The new method was applied to a total of 15 control rods of 1000 MWe and 1400 MWe PWRs in Korea with worths in the range of 200 pcm -1200 pcm. The results show the average difference of -0.4% and the maximum difference of 7.1% compared to the design values. Therefore, the new DCRM-EK will be applied to PWRs using low sensitivity integral fission chambers, and also can replace the original DCRM when the evaluation fails by big noises present in current or voltage signals of uncompensated/compensated ion chambers.

Field study of the process of densification of loose and liquefiable coastal soils using gravel impact compaction piers (GICPs)

  • Niroumand, Bahman;Niroumand, Hamed
    • Geomechanics and Engineering
    • /
    • v.30 no.5
    • /
    • pp.479-487
    • /
    • 2022
  • This study evaluates the performance of gravel impact compaction piers system (GICPs) in strengthening retrofitting a very loose silty sand layer with a very high liquefaction risk with a thickness of 3.5 meters in a multilayer coastal soil located in Bushehr, Iran. The liquefiable sandy soil layer was located on clay layers with moderate to very stiff relative consistency. Implementation of gravel impact compaction piers is a new generation of aggregate piers. After technical and economic evaluation of the site plan, out of 3 experimental distances of 1.8, 2 and 2.2 meters between compaction piers, the distance of 2.2 meters was selected as a winning option and the northern ring of the site was implemented with 1250 gravel impact compaction piers. Based on the results of the standard penetration test in the matrix soil around the piers showed that the amount of (N1)60 in compacted soils was in the range of 20-27 and on average 14 times the amount of (1-3) in the initial soil. Also, the relative density of the initial soil was increased from 25% to 63% after soil improvement. Also the safety factor of the improved soil is 1.5-1.7 times the minimum required according to the two risk levels in the design.