• Title/Summary/Keyword: Design Spiral

Search Result 353, Processing Time 0.025 seconds

Stress Analysis of Composite Double Lead Spiral in 20mm Universal Ammunition Loading System (20mm 범용탄약적재장비의 복합재 이중리드나선구조 설계)

  • Je, Hyun-Min;Kim, Wie-Dae
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.340-346
    • /
    • 2018
  • This paper addresses the stress analysis and design of composite double lead spiral which is boarded in 20mm universal ammunition drum by finite element method. The spiral system is very important to transfer the ammunition in stable and reliable manners for aircraft. Some verifications are done to check the possibility of composite application in spiral system. The design variables, stacking sequence and fiber orientation angles, are investigated for reliable design for practical design. The Tsai-Wu failure theory is applied to see the safety of the spiral structure. The design result is suggested to manufacture the double lead spiral part.

A design of a lowpass filter using Quad-Spiral Defected Ground Structure (Quad-Spiral Defected Ground Structure를 이용한 저역통과 여파기 설계)

  • Jeong, Yong-Woo;Kim, Chul-Soo;Park, Kyu-Ho;Ahn, Dal
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.343-346
    • /
    • 2003
  • A new structure to design low pass filters (LPFs) is presented rho proposed structure has the etched shape of Quad-Spiral DGS(Defected Ground Structure) on microstrip transmission lines. By extracting the equivalent circuit elements of unit Quad-Spiral DGS, LPFs are designed easily. The equivalent circuit of Quad-Spiral DGS consists of a step impedance resonator and lumped elements. The proposed LPF provided steep rejection characteristics with 5-poles. Experimental results show excellent agreements with circuit simulation results in wide band and the validity of our circuit modeling for LPF design. The result shows another possibility of Quad Spiral DGS for microwave devices.

  • PDF

Design, analyses, and evaluation of a spiral TDR sensor with high spatial resolution

  • Gao, Quan;Wu, Guangxi;Yu, Xiong
    • Smart Structures and Systems
    • /
    • v.16 no.4
    • /
    • pp.683-699
    • /
    • 2015
  • Time Domain Reflectometry (TDR) has been extensively applied for various laboratory and field studies. Numerous different TDR probes are currently available for measuring soil moisture content and detecting interfaces (i.e., due to landslides or structural failure). This paper describes the development of an innovative spiral-shaped TDR probe that features much higher sensitivity and resolution in detecting interfaces than existing ones. Finite element method (FEM) simulations were conducted to assist the optimization of sensor design. The influence of factors such as wire interval spacing and wire diameter on the sensitivity of the spiral TDR probe were analyzed. A spiral TDR probe was fabricated based on the results of computer-assisted design. A laboratory experimental program was implemented to evaluate its performance. The results show that the spiral TDR sensor featured excellent performance in accurately detecting thin water level variations with high resolution, to the thickness as small as 0.06 cm. Compared with conventional straight TDR probe, the spiral TDR probe has 8 times the resolution in detecting the water level changes. It also achieved 3 times the sensitivity of straight TDR probe.

Analysis on Flexural Behavior of Spiral Steel Pipe Considering Residual Stress Developed by Pipe Manufacturing (조관에 의한 잔류 응력을 고려한 스파이럴 강관의 휨 거동 분석)

  • Kim, Kyuwon;Kim, Jeongsoo;Kang, Dongyoon;Kim, Moon Kyum
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.4
    • /
    • pp.65-73
    • /
    • 2019
  • A spiral steel pipe has been more used widely as a structural member as well as transport pipeline because the pipe can be manufactured continuously, consequently more economical than the conventional UOE pipe. As improved pipe manufacture technology makes spiral pipes to have high strength and to have larger diameters, the spiral pipes have been recently used as long distance transport pipeline with a large diameter and strain-based design is thus required to keep structural integrity and cost effectiveness of the spiral pipe. However, design codes of spiral pipe have not been completely established yet, and structural behaviors of a spiral pipe are not clearly understood for strain-based design. In this paper, the effects of residual stresses due to the spiral pipe manufacture process are investigated on the flexural behavior of the spiral pipe. Finite element analyses were conducted to estimate residual stresses due to the manufacturing process for the pipes which have different forming angle, thickness, and strength, respectively. After that, the results were used as initial conditions for flexural analysis of the pipe to numerically investigate its flexural behaviors.

A Study on Dress Design with Application of Spiral Form (나선형(螺旋形) 모티브를 응용(應用)한 복식(服飾) 디자인 연구(硏究))

  • Park, Hee-Soon;Yang, Sook-Hi
    • Journal of Fashion Business
    • /
    • v.6 no.2
    • /
    • pp.53-66
    • /
    • 2002
  • The spiral form, which comes from the organic form of natural phenomenon such as growth of creatures, has been used as a factor of formative shape in various fields of art until now. In conjunction herewith, this study intends to discover and express the life force and the formative beauty of natural substances with the organic spiral forms into clothing design, using various creating methods and materials such as Korean traditional paper. The natural substances with the spiral structure, such as seashells, land snails, passion flower, curled flower, growing chart of plants, Impatiens textori was used as subjects of the designs. The seven pieces of work were completed with attempts to develop aesthetic forms through the presentation techniques and methods via restructuring process of simplification, partial transformation and consolidation. Through such process the conclusion of this study is as follows: First, the nature, with unlimited possibilities, could be subject of human formative activities, leading to the creative world of formative art for designers. Second, adaptation of the spiral organic forms of nature into the contemporary clothing designs proved the motif as a source of inspiration of diverse subject, in recognition with its innate formative beauty as well as external shape. Third, design expressions via restructuring process of simplification, partial transformation and consolidation with designer's subjective point of view were adequate for the creations of contemporary fashion designs. Fourth, the Korean traditional paper, as a fine material for various shape according to the handling method, could be used appropriately in the contemporary clothing designs, expressing our aesthetic senses. Fifth and finally, expansion of the realm of formative expression of clothing through the development of possibilities of expression in contemporary clothing would enhance the creative possibilities of clothing design as formative art. In conclusion, the expression of clothing design as formative art was developed on the emphasis of re-creation of natural objects of the organic spiral form. For the future study, the applications of spiral form into everyday clothing designs, consolidating artistic senses and practical senses, are expected as opportunity of proposing developmental possibilities of the contemporary clothing designs.

A Study on Design Parameters to Improve Load Capacity of Spiral Grooved Thrust Bearing (스파이럴 그루브 스러스트 베어링의 부하용량 향상을 위한 설계 변수에 대한 연구)

  • 강지훈;김경웅
    • Tribology and Lubricants
    • /
    • v.18 no.3
    • /
    • pp.181-186
    • /
    • 2002
  • A numerical analysis is undertaken to show the influence of bearing design parameters on the load capacity of air lubricated spiral grooved thrust bearing. The governing equation derived from the mass balance is solved by the finite difference method. Optimal values for various design parameters are obtained to maximize the load capacity. The design parameters are the groove angle, the groove width ratio, the groove height ratio, and the seal ratio.

Lubrication Performance Analyses of Spiral Groove Dry Gas Seals - Part II: Detailed Performance Evaluation of Groove Design Parameters (스파이럴 그루브 드라이 가스 시일의 윤활 성능해석 - Part II: 그루브 설계 파라미터의 상세 성능평가)

  • Lee An Sung;Yang Jae-Hun;Choi Dong-Hoon
    • Tribology and Lubricants
    • /
    • v.20 no.2
    • /
    • pp.68-76
    • /
    • 2004
  • Applying a general Galerkin FE lubrication analysis method to spiral groove dry gas seals, this study intends to analyze in detail the effects of groove design parameters, such as a spiral angle, groove width ratio, groove radius ratio, groove depth ratio, and groove taper ratio, on the lubrication performances of an opening force, leakage, axial stiffness and damping, and angular stiffness and damping at low and high rotating speeds: 3,600 and 15,000 nm. Results show that, for the primary design consideration performances such as the opening force and axial and angular stiffnesses, a spiral angle of $25^{\circ}$, a groove width ratio of 0.46, a groove radius ratio of 1.1, a groove depth ratio of 1.0, and a groove taper ratio of 0.0 are preferred. Where the recommended relatively low values of groove depth and taper ratios are to keep the axial and angular dampings positive or higher than 0 particularly at the high rotating speed.

OPTIMAL DESIGN AND FABRICATION OF SPIRAL INDUCTOR ON SILICON SUBSTRATE (실리콘 기판상에서 나선형 인덕터의 최적설계 및 제작)

  • 서종삼;박종욱이성희김영석
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.645-648
    • /
    • 1998
  • We used a three-dimensional inductance extraction program, Fasthenry for optimal design of the spiral inductors on silicon substrate. The inductance and quality factor of the spiral inductors with various design parameters were calculated so that the optimal parameter value was determined. The spiral inductors then were fabricated using different foundary processes and were measured using the network analyzer and microwave probes. The pad and other parasitics of measurement system were de-embedded using the y-parameter calibration technique. the inductors fabricated using the LG 0.8um process and HP 0.5um process showed the quality factor of 5.8 and 3, respectively. Finally the equivalent circuit farameters of the spiral inductors on silicon substrate were extracted from the measurement data using the matlab.

  • PDF

Crosstalk Analysis of the Spiral Inductor in LTCC (다층 구조를 갖는 LTCC기술에서 나선형 인덕터로 인한 혼신 해석)

  • Kim, Seong-Nam;Kim, Gyung-Chul;Cho, Hyun-Min;Hwang, Chi-Jeon;Yang, Hyung-Kook;Lee, Hai-Young
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.260-264
    • /
    • 2003
  • It is possible to design the high performance, integration and low cost radio frequency components by using LTCC(Low Temperature Cofired Ceramic) technology. But there is a critical point to design the spiral inductor because of crosstalk effects. of the crosstalk effect of the spiral inductor are investigated using full-wave analysis of the FEM(Finite Element Method) in this paper. The results show that input power of the spiral inductor are coupled from 0.1% to 10% above 3GHz. Therefore, we should consider the crosstalk effects when we design the LTCC.

  • PDF