• Title/Summary/Keyword: Design Speed

Search Result 9,493, Processing Time 0.037 seconds

Evaluation of Highway Design Alternatives Based on Reliability Criterion for Traffic Safety (신뢰도 기준에 근거한 도로설계 대안에 대한 교통안전성 평가)

  • Oh, Heung-Un
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.6
    • /
    • pp.186-196
    • /
    • 2010
  • It has been well known that traffic accidents occur under combined functional contributions of drivers, vehicles and road facilities, and that evaluation of safety levels for a specific road section or point is generally much complicated. Additionally, most of traffic accidents occur randomly implicating it is necessary to be evaluated in terms of probability theory. Thus, the evaluation model which reflects various characteristics and probabilistic distributions of traffic accidents has been necessary. The present paper provides a reliability based model with variables of probabilistic operating speeds and design speeds together which have been individually explaining associated characteristics in traffic accidents. Consequently, the model made it possible for speed management and road improvement projects to be evaluated in a common index. Application studies were performed in three cases. Through the studies, couples of facts were identified that the model successfully considered the probabilistic operating speeds and design speeds together and that then, the model evaluated road safety alternatives relatively which are complicatedly characterized and differently located.

Sensorless Speed Control of Induction Motor Based on System-On-A-Chip Design (원칩 설계에 의한 유도전동기의 센서리스 속도제어)

  • Lee, H.J.;Kim, S.J.;Lee, J.H.;Kwon, Y.A.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1102-1104
    • /
    • 2000
  • Recently effective system-on-a-chip design methodology is developed, and ASIC chip design is much studied for motor control. This paper investigates the design and implementation of ASIC chip for sensorless speed control of induction motor using VHDL which is a standarded hardware description language. The sensorless control strategy is to design an adaptive state observer for flux estimation and to estimate the rotor speed from the estimated rotor flux and stator current. The presented system is implemented using a simple electronic circuit based on FPGA.

  • PDF

study on conceptional design of car-body structure for Korean tilting train (한국형 틸팅차량 차체구조물의 개발을 위한 개념설계)

  • 문형석;유원희;최성규;엄기영;한성호;이수길
    • Proceedings of the KSR Conference
    • /
    • 2002.05a
    • /
    • pp.303-311
    • /
    • 2002
  • A first evaluation of the possibilities of high speed trains in conventional railway in Korea have been investigated. The radius of curvature was considered the major problem with high-speed trains in Korea. If KNR(Korea National railway) likes to increase the speed, is then whether KNR shall construct straigthen the track or develop a train that can reduce travel time in curves The research concerns structural design of train car-body is to reduce heavy stress concentration. Using 3D solid modeling, Finite Element analysis and shape optimization combined with powerful postprocessing, graphical display and animation to achieve complete and accurate design and performance will be carried out further project Main purpose of this project is to provide korean tilting train car body's conceptional design. Based on first year research results, the design of car-body will be performed by train manufacture.

  • PDF

Design of Speed Observer and Controller for AC Servo System by Rapid Design System (고속설계시스템에 의한 AC 서보시스템의 속도관측기 및 속도제어기 설계)

  • Ji Jun-Keun;Lee Dong-Min
    • Proceedings of the KAIS Fall Conference
    • /
    • 2004.11a
    • /
    • pp.170-173
    • /
    • 2004
  • In this paper design of speed observer and controller for AC servo system by rapid design system(RG-01D) using DSP of Realgain company is introduced. 'AC Servo-Designer' system, including CEMTool /SIMTool S/W, RG-DSPIO board, AC servo driver and AVTOTool program, is used in this research. Because 'AC Servo-Designer' system can use SIMTool blocks to design and implement various controller in short time, speed observer and controller for AC servo system is easily designed and implemented according to control objectives.

  • PDF

The conditional risk probability-based seawall height design method

  • Yang, Xing;Hu, Xiaodong;Li, Zhiqing
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.6
    • /
    • pp.1007-1019
    • /
    • 2015
  • The determination of the required seawall height is usually based on the combination of wind speed (or wave height) and still water level according to a specified return period, e.g., 50-year return period wind speed and 50-year return period still water level. In reality, the two variables are be partially correlated. This may be lead to over-design (costs) of seawall structures. The above-mentioned return period for the design of a seawall depends on economy, society and natural environment in the region. This means a specified risk level of overtopping or damage of a seawall structure is usually allowed. The aim of this paper is to present a conditional risk probability-based seawall height design method which incorporates the correlation of the two variables. For purposes of demonstration, the wind speeds and water levels collected from Jiangsu of China are analyzed. The results show this method can improve seawall height design accuracy.

Updates of Korean Design Standard (KDS) on the wind load assessment and performance-based wind design

  • Han Sol Lee;Seung Yong Jeong;Thomas H.-K. Kang
    • Wind and Structures
    • /
    • v.37 no.2
    • /
    • pp.117-131
    • /
    • 2023
  • Korea Design Standard (KDS) will be updated with two major revisions on the assessment of wind load and performance-based wind design (PBWD). Major changes on the wind load assessment are the wind load factor and basic wind speed. Wind load factor in KDS is reduced from 1.3 to 1, and mean recurrence interval (MRI) for basic wind speed increases from 100 years to 500 years considering the reduction of wind load factor. Additional modification is made including pressure coefficient, torsional moment coefficient and spectrum, and aeroelastic instability. Combined effect of the updates of KDS code on the assessment of wind load is discussed with the case study on the specified sites and building. PBWD is newly added in KDS code to consider the cases with various target performance, vortex-induced vibration, aeroelastic instability, or inelastic behavior. Proposed methods and target performance for PBWD in KDS code are introduced.

Synchronization and identification of ship shaft power and speed for energy efficiency design index verification

  • Lee, Donchool;Barro, Ronald Dela Cruz;Nam, Jeonggil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.123-132
    • /
    • 2014
  • The maritime sector is advancing with dedicated endeavor to reduce greenhouse gas in addressing issues with regards to global warming. Since 01 January 2013, the International Maritime Organization (IMO) regulation mandatory requirement for Energy Efficiency Design Index (EEDI) has been in place and should be satisfied by newly-built ships of more than 400 gross tonnage and the Ship Energy Efficiency Management Plan (SEEMP) for all ships type. Therefore, compliance to this necessitates planning during the design stage whereas verification can be carried-out through an acceptable method during sea trial. The MEPC-approved 2013 guidance, ISO 15016 and ISO 19019 on EEDI serves the purpose for calculation and verification of attained EEDI value. Individual ships EEDI value should be lower than the required value set by these regulations. The key factors for EEDI verification are power and speed assessment and their synchronization. The shaft power can be measured by telemeter system using strain gage during sea trial. However, calibration of shaft power onboard condition is complicated. Hence, it relies only on proficient technology that operates within the permitted ISO allowance. On the other hand, the ship speed can be measured and calibrated by differential ground positioning system (DGPS). An actual test on a newly-built vessel was carried out to assess the correlation of power and speed. The Energy-efficiency Design Index or Operational Indicator Monitoring System (EDiMS) software developed by the Dynamics Laboratory-Mokpo Maritime University (DL-MMU) and Green Marine Equipment RIS Center (GMERC) of Mokpo Maritime University was utilized for this investigation. In addition, the software can continuously monitor air emission and is a useful tool for inventory and ship energy management plan. This paper introduces the synchronization and identification method between shaft power and ship speed for EEDI verification in accordance with the ISO guidance.

A Design of the High-Speed Cipher VLSI Using IDEA Algorithm (IDEA 알고리즘을 이용한 고속 암호 VLSI 설계)

  • 이행우;최광진
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.11 no.1
    • /
    • pp.64-72
    • /
    • 2001
  • This paper is on a design of the high-speed cipher IC using IDEA algorithm. The chip is consists of six functional blocks. The principal blocks are encryption and decryption key generator, input data circuit, encryption processor, output data circuit, operation mode controller. In subkey generator, the design goal is rather decrease of its area than increase of its computation speed. On the other hand, the design of encryption processor is focused on rather increase of its computation speed than decrease of its area. Therefore, the pipeline architecture for repeated processing and the modular multiplier for improving computation speed are adopted. Specially, there are used the carry select adder and modified Booth algorithm to increase its computation speed at modular multiplier. To input the data by 8-bit, 16-bit, 32-bit according to the operation mode, it is designed so that buffer shifts by 8-bit, 16-bit, 32-bit. As a result of simulation by 0.25 $\mu\textrm{m}$ process, this IC has achieved the throughput of 1Gbps in addition to its small area, and used 12,000gates in implementing the algorithm.

Development of Intelligent Planning and Analysis Method for Railroad Alignment Improvement (지능형 철도 선형개량 계획 및 분석 기술 개발)

  • Kim, Jeong Hyun;Lee, Jun;Oh, Jitaek;Lim, Joonbum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.651-657
    • /
    • 2023
  • Railroad alignment improvements and operating speed increase occupy considerable portion in recent railroad market. Developing countries have limitations to construction of new high speed railroads due to the burden of budgets and the lack of demands, and the projects of operating speed increase arepracticallyrecommended. Thisstudy developed the methodologyto provide the railroad alignment design alternatives and the costs by upgrading the "Intelligent Railroad Alignment Design Program (ei-Rail)" which has been used to obtain the alignment plans and construction costs for railroad construction projects. The program provides the cost for alignment improvement, design drafts and the effects of operating speed increase with the input of target improvement speed and the prevailing railroad alignment on the numerical map. It is then expected for the ei-Rail program to be used for the supporting tool for the railroad alignment improvement projects.

A Study on the Wedge Angle of the Rail Clamp according to the Design Wind Speed Criteria Change

  • Lee Jung-Myung;Han Dong-Seop;Han Geun-Jo;Jeon Young-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.29 no.7
    • /
    • pp.641-646
    • /
    • 2005
  • In cargo-working, it unavoidably happens that the quay crane slip along the rail and the container move from side to side. Especially, they involve a lot of risk in bad weather. The rail clamp is a mooring device to prevent that the quay crane slips along the rail due to bad weather or the wind blast while the quay crane do the cargo-working And it will play a greater role in port container terminal integration and automation To design the wedge type rail clamp, it is very important to determine the wedge angle. In this study, we expect that the design wind speed of the quay crane will change over 16m/s. Assuming that the design wind speed is 40m/s, we determined the proper wedge angle of the wedge type rail clamp for the 50ton class quay crane.