• Title/Summary/Keyword: Design Service Life

Search Result 813, Processing Time 0.023 seconds

Durability design and quality assurance of major concrete infrastructure

  • Gjorv, Odd E.
    • Advances in concrete construction
    • /
    • v.1 no.1
    • /
    • pp.45-63
    • /
    • 2013
  • Upon completion of new concrete structures, the achieved construction quality always shows a high scatter and variability, and in severe environments, any weaknesses and deficiencies will soon be revealed whatever durability specifications and materials have been applied. To a certain extent, a probability approach to the durability design can take the high scatter and variability into account. However, numerical solutions alone are not sufficient to ensure the durability and service life of concrete structures in severe environments. In the present paper, the basis for a probability-based durability design is briefly outlined and discussed. As a result, some performance-based durability requirements are specified which are used for quality control and quality assurance during concrete construction. The final documentation of achieved construction quality and compliance with the specified durability are key to any rational approach to more controlled and increased durability. As part of the durability design, a service manual for future condition assessment and preventive maintenance of the structure is also produced. It is such a service manual which helps provide the ultimate basis for achieving a more controlled durability and service life of the given concrete structure in the given environment.

Evaluation of Economy Feasibility for Bridge Superstructures Using LCC Optimal Design (LCC 최적설계를 황용한 교량 상부구조의 경제성 평가)

  • Ahn Ye-Jun;Lee Kwang-Kyun;Park Jang-Ho;Shin Young-Seok
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.549-556
    • /
    • 2006
  • Life cycle cost is one of important factors in the evaluation of economy feasibility. Load carrying capacity curves for girders and decks are derived on the basis of bridge diagnostic results and condition grade curves to determine the service life and life cycle profile. The total life cycle costs including initial cost, damage cost, maintenance cost, user cost, and etc for the service life are calculated for steel box girder, PSC-I girder and rationalized plate girder. The optimal designs are performed for various service lifes and different superstructure types. The effects of parameters on the life cycle cost are investigated and the economy feasibility is evaluated through the sensitivity analysis.

  • PDF

A Study on The Personalized Seamless Smart Home Service Design for Life-style Care in Phono Sapience era (Personalized Seamless 라이프스타일 케어 스마트홈 서비스디자인 연구 : 포노 사피엔스 시대를 중심으로)

  • Park, Ui Jeong;Kim, Jung Woo;Choi, Jae Boong
    • Journal of Information Technology Services
    • /
    • v.19 no.5
    • /
    • pp.1-14
    • /
    • 2020
  • Mankind has been attempting to live a happy and safe family life in a residential space. Due to the advent of the mobile phone in the 1990s and the smart phone in the 2000s, when the information and communication age came, human life has been innovatively changed. The revolution of human civilization led to the Neolithic Revolution and the Iron Age, followed by a smart phone revolutionizing human life, and the revolution faces with the era of info-communication, smart phones became a daily life and the fourth industrial revolution. The fourth industrial revolution is an era of info-communication technology (ICT), creating a new paradigm across human life through technological developments such as artificial intelligence (AI), IoT, big data, mobile, and cloud. The smart home is actively researched in a direction to support the overall human life as a representative future residential culture paradigm. However, the study considering the needs according to the lifestyle, functional characteristics of each living space and human lifestyle of the Phono Sapiens era where smart phones live like daily life was relatively insufficient. In addition, research on smart home service design should be considered from the apartment residential space planning stage. Therefore, this study has significance in suggesting the direction of research on human-centered smart home service design considering the characteristics of each living space and resident's life-style in the smart phone era.

Service Life Variation for RC Structure under Carbonation Considering Korean Design Standard and Design Cover Depth (국내설계기준과 피복두께를 고려한 RC 구조물의 탄산화 내구수명의 변동성)

  • Kim, Yun-Shik;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.15-23
    • /
    • 2021
  • In this paper, service life for RC(Reinforced Concrete) substructure subjective to carbonation was evaluated through deterministic and probabilistic method considering field investigation data and Design Code(KDS 14 20 40). Furthermore changes in service life with increasing COV(Coefficient of Variation) and equivalent safety index meeting the same service life were studied. From the investigation, the mean and its COV of cover depth were evaluated to 70.0 ~ 90.0 mm and 0.2, respectively. With intended failure probability of 10.0 % and 70 mm of cover depth, service life decreased to 137 years, 123 years, and 91 years with increasing COV of 0.05, 0.1, and 0.2, respectively. In the case of 80 mm of cover depth, it changes to 179 years, 161 years, and 120 years with increasing COV. The equivalent safety index meeting the same service life from deterministic method showed 1.66 ~ 3.43 for 70 mm of cover depth and 1.61 ~ 3.24 for 80 mm of cover depth, respectively. The various design parameters covering local environment and quality condition in deterministic method yields a considerable difference of service life, so that determination of design parameters are required for exposure conditions and parameter variation.

Service Life Prediction of Marine Rubber Fender

  • Woo, Chang-Su;Park, Hyun-Sung;Sung, Il-Kyung;Yun, Soon-Hwan;Lee, Jae-Moon
    • Elastomers and Composites
    • /
    • v.54 no.1
    • /
    • pp.70-76
    • /
    • 2019
  • The function and purpose of the marine rubber fender, to prevent the damage of the ship and the mooring while the ship is being attached to the pier. However, maintenance of the fender after installation is not enough, because it is generally handled as an attachment facility. Estimation the life of a marine rubber fender is important in the maintenance of a port. When manufacturers design and produce marine rubber fenders, they do so according to various conditions such as the reaction force acting on the hull and docking vessel and deformation after absorbing the kinetic energy of the ship. In this study, a method for predicting and evaluating service life from the product design and development stage was established, in order to evaluate the durability of the marine rubber fenders. The SSp-300H and HSP-300H models were used to predict the service life. The method developed in this study, is expected to predict the service life of the marine rubber fender accurately and in a comparatively shorter time, thereby contributing to the evaluation standard and quality stability of the product.

Resilience among Undergraduate Freshmen during the COVID-19 Pandemic: The Development of Resource Promotion Program (COVID-19 팬데믹 상황에서 대학신입생의 회복탄력성: 자원 증진 프로그램의 개발)

  • Kim, Jae Yoon;Lee, So Young;Park, Eunyoung;Mana, Mana;Baek, Joon Sang;Kang, Min Ju
    • Human Ecology Research
    • /
    • v.60 no.2
    • /
    • pp.243-256
    • /
    • 2022
  • Undergraduate freshmen are currently encountering numerous difficulties in adapting to college life due to the outbreak of the COVID-19 pandemic. Thus, several studies have underlined the need to develop interventions focused on undergraduate students' resilience during this situation. We adopted the service design method in identifying the difficulties faced by undergraduate freshmen during this pandemic, and also developed interventions for raising their resilience. The service design method is a person-centered approach which adopts the user's viewpoint in developing solutions, thereby enabling their requirements to be satisfied. Surveys and in-depth interviews revealed that undergraduate freshmen were experiencing psycho-emotional problems which were derived from schoolwork and college life. This is particularly the case with students who are experiencing greater levels of academic difficulty, and were insufficiently equipped with resources such as stress-coping strategies and social support. Four undergraduate freshmen were recruited online to test the effectiveness of a resource promotion program aimed at enhancing their resilience. This program has proved to be helpful in relieving daily/academic stress and in building relationships among freshmen, regarding which the participants showed a high level of satisfaction. The results were discussed by focusing on psycho-emotional difficulties and resources of college freshmen, as well as the effectiveness of the resource promotion program. Further research is required in order to verify the efficiency of the program and to confirm conclusions.

Sustainable concrete mix design for a target strength and service life

  • Tapali, Julia G.;Demis, Sotiris;Papadakis, Vagelis G.
    • Computers and Concrete
    • /
    • v.12 no.6
    • /
    • pp.755-774
    • /
    • 2013
  • Considering the well known environmental issues of cement manufacturing (direct and indirect levels of $CO_2$ emissions), clinker replacement by supplementary cementing materials (SCM) can be a very promising first step in reducing considerably the associated emissions. However, such a reduction is possible up to a particular level of SCM utilization, influenced by the rate of its pozzolanic reaction. In this study a (4-step) structured methodology is proposed in order to be able to further adjust the concrete mix design of a particular SCM, in achieving additional reduction of the associated levels of $CO_2$ emissions and being at the same time accepted from a derived concrete strength and service life point of view. On this note, the aim of this study is twofold. To evaluate the environmental contribution of each concrete component and to provide the best possible mix design configuration, balanced between the principles of sustainability (low environmental cost) and durability (accepted concrete strength and service life ). It is shown that such a balance can be achieved, by utilising SCM by-products in the concrete mix, reducing in this way the fixed environmental emissions without compromising the long-term safety and durability of the structure.

Service Design and Service Model for Smart Plug (스마트플러그를 위한 서비스 디자인 및 서비스모델)

  • Lee, Hee Ju;Yoon, Se Hwan;Kim, Yong Se
    • Korea Science and Art Forum
    • /
    • v.19
    • /
    • pp.561-568
    • /
    • 2015
  • A lot of electrical energy is used in our daily life. While energy saving concerns are overall, consumption practices of people in general are very different. People want to control their energy use and by knowing the amount of energy they use. Smart plug is a new device that measures electricity usage through each plug at an outlet with on/off control. User experience for electrical devices in regards to electricity usage should be newly designed. In this study, based on the survey, personas have been devised and their energy use experience in relation with smart plugs have been designed. Service models have been designed as well. By designing service with smart plug, user could enhance the experience of energy usage and saving and energy consumption practices could be improved in a sustainable manner.

Probability-based durability design software for concrete structures subjected to chloride exposed environments

  • Shin, Kyung-Joon;Kim, Jee-Sang;Lee, Kwang-Myong
    • Computers and Concrete
    • /
    • v.8 no.5
    • /
    • pp.511-524
    • /
    • 2011
  • Although concrete is believed to be a durable material, concrete structures have been degraded by severe environmental conditions such as the effects of chloride and chemical, abrasion, and other deterioration processes. Therefore, durability evaluation has been required to ensure the long term serviceability of structures located in chloride exposed environments. Recently, probability-based durability analysis and design have proven to be reliable for the service-life predictions of concrete structures. This approach has been successfully applied to durability estimation and design of concrete structures. However, currently it is difficult to find an appropriate method engineers can use to solve these probability-based diffusion problems. In this paper, computer software has been developed to facilitate probability-based durability analysis and design. This software predict the chloride diffusion using the Monte Carlo simulation method based on Fick's second law, and provides durability analysis and design solutions. A graphic user interface (GUI) is adapted for intuitive and easy use. The developed software is very useful not only for prediction of the service life but for the durability design of the concrete structures exposed to chloride environments.

Study of Optimal Design Parameter for Gearbox on Wind Power System (풍력발전시스템용 증속기의 최적화 설계요소에 관한 연구)

  • 이근호;성백주;최용혁
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.737-741
    • /
    • 2003
  • The wind power system is spotlighted as one of the no-pollution power generation systems. The system uses winds as power source that are rotated the blade and the rotating power from blade generate the electricity power. Gearbox needs to transfer the wind powers that have the high-torque-low-speed characteristics to generator that have the low-torque-high-speed characteristics. Because the wind power system generally locates the remote place like seaside or mountainside and the gearbox installs on the limited and high placed space, the gearbox of the wind power system is required the optimal space design and high reliability. In this paper, the structure of the gearbox is proposed to achieve the optimal space and efficiency by compounding the planetary gear train that has the high power density and parallel type gear train that has the long service life. The design parameters that are affected the service life are studied. The gear ratio and face width are investigated as an affected parameter for design sensitivity of service life.

  • PDF