• Title/Summary/Keyword: Design Rainfall

Search Result 703, Processing Time 0.029 seconds

Characteristics of Coagulants Distribution by the Pumping Rate in Pump Diffusion Mixer (Pump Diffusion Mixer에서 압력수량에 따른 응집제 확산분포 특성)

  • Park, Youngoh;Kim, Ki-Don;Park, No-Suk;Lim, Jae-Lim;Lim, Kyung-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.1
    • /
    • pp.65-71
    • /
    • 2008
  • This study collected the latest 30-year (1976~2005) continuous rainfall data hourly recorded at 61 meterological observatories in Korea, and the continuous rainfall data was divided into individual rainfall events. In addition, distribution charts of average rainfall event-depth were created to facilitate the application to the overflow risk-based design of detention storage basin. This study shows that 4 hour is appropriate for SST (storm separation time) to separate individual rainfall events from the continuous rainfall data, and the one-parameter exponential distribution is suitable for the frequency distribution of rainfall event depths for the domestic rainfall data. The analysis of the domestic rainfall data using SST of 4 hour showed that the individual rainfall event was 1380 to 2031 times, the average rainfall event-depth was 19.1 to 32.4mm, and ranged between 0.877 and 0.926. Distribution charts of average rainfall event-depth were created for 4hour and 6 hour of SST, respectively. The inland Gyeongsangbuk-do, Western coastal area and inland of Jeollabuk-do had relatively lower average rainfall event-depth, whereas Southern coastal area, such as Namhae, Yeosu, and Jeju-do had relatively higher average rainfall event-depth.

Sensitivity Analysis of the SWMM Model Parameters Based on Design Rainfall Condition (설계강우조건에 따른 SWMM모형 매개변수의 민감도 분석)

  • Lee, Jong-Tae;Hur, Sung-Chul;Kim, Tae-Hwa
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.3 s.152
    • /
    • pp.213-222
    • /
    • 2005
  • This study is a sensitivity analysis of the parameters which affect the simulation results under various design rainfall conditions, using the SWMM model, for three selected basins in urban areas. The sensitivity of the peak flow rate is defined by $S_Q$ (=1.0 - (min. ratio of peak flow rate/max. ratio of peak flow rate)), and the rainfall conditions are classified in terms of design rainfall frequency, duration, and distribution. The simulation results show that in most conditions the parameters - the impermeable area ratio, the sewer slope, and the initial infiltration capacity - have more significant effects on the results than other parameters. As the design rainfall frequency increases, the sensitivity of the sewer slope and sewer roughness increases, while the parameters related with the surface runoff decrease. When the rainfall duration increases, the sensitivities of most parameters of surface runoff and sewer flow decrease. Also, at the 1st quarterly Huff rainfall distribution condition, the impermeable area ratio has high sensitivity, but at the 4th quarterly condition the parameters related with sewer flow show higher sensitivities. These tendencies can be explained by considering the procedure for computing the effective rainfall and kinematic wave on the surface and sewer flow.

Estimation of the Stormwater Impoundments Volume Dependent on the Durations of Design Rainfall (계획강우의 지속기간에 따른 저류지용량의 산정)

  • Yun, Yeo-Jin;Lee, Jae-Cheol
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.5
    • /
    • pp.415-426
    • /
    • 2001
  • After Disaster Impact Assessment(DIA) Program was particed, the wide variety of hydrological data are estimated by introducing the concept of critical storm duration to calculate the stormwater impoundments as the alternative of increasing runoff due to many developments. Critical storm duration is varied by a lot of hydraulic structures, drainage characteristics, temporal distribution of design rainfall, return period, and runoff models. In this study the methods of estimating the proper volume to design the stormwater impoundments are proposed to determine the required volume by comparing and analyzing the maximum stormwater impoundments in accordance with the impoundment volume and rainfall duration by using the concept of storage ratio presented in the existing studies. The methods of determining the critical storm duration of design rainfall which cause the maximum load from the runoff hydrograph will be studied as analyzing rainfall-runoff using the various runoff models and observed data.

  • PDF

Temporal distritution analysis of design rainfall by significance test of regression coefficients (회귀계수의 유의성 검정방법에 따른 설계강우량 시간분포 분석)

  • Park, Jin Heea;Lee, Jae Joon
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.4
    • /
    • pp.257-266
    • /
    • 2022
  • Inundation damage is increasing every year due to localized heavy rain and an increase of rainfall exceeding the design frequency. Accordingly, the importance of hydraulic structures for flood control and defense is also increasing. The hydraulic structures are designed according to its purpose and performance, and the amount of flood is an important calculation factor. However, in Korea, design rainfall is used as input data for hydrological analysis for the design of hydraulic structures due to the lack of sufficient data and the lack of reliability of observation data. Accurate probability rainfall and its temporal distribution are important factors to estimate the design rainfall. In practice, the regression equation of temporal distribution for the design rainfall is calculated using the cumulative rainfall percentage of Huff's quartile method. In addition, the 6th order polynomial regression equation which shows high overall accuracy, is uniformly used. In this study, the optimized regression equation of temporal distribution is derived using the variable selection method according to the principle of parsimony in statistical modeling. The derived regression equation of temporal distribution is verified through the significance test. As a result of this study, it is most appropriate to derive the regression equation of temporal distribution using the stepwise selection method, which has the advantages of both forward selection and backward elimination.

Criteria for calculation of CSO volume and frequency using rainfall-runoff model (우수유출 모형을 이용한 합류식하수관로시스템의 월류량, 월류빈도 산정 기준 결정 연구)

  • Lee, Gunyoung;Na, Yongun;Ryu, Jaena;Oh, Jeill
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.3
    • /
    • pp.313-324
    • /
    • 2013
  • It is widely known that untreated Combined Sewer Overflows (CSOs) that directly discharged from receiving water have a negative impact. Recent concerns on the CSO problem have produced several large scale constructions of treatment facilities, but the facilities are normally designed under empirical design criteria. In this study, several criteria for defining CSOs (e.g. determination of effective rainfall, sampling time, minimum duration of data used for rainfall-runoff simulation and so on) were investigated. Then this study suggested a standard methodology for the CSO calculation and support formalized standard on the design criteria for CSO facilities. Criteria decided for an effective rainfall was over 0.5 mm of total rainfall depth and at least 4 hours should be exist between two different events. An Antecedent dry weather period prior to storm event to satisfy the effective rainfall criteria was over 3 days. Sampling time for the rainfall-runoff model simulation was suggested as 1 hour. A duration of long-term simulation CSO overflow and frequency calculation should be at least recent 10 year data. A Management plan for the CSOs should be established under a phase-in of the plan. That should reflect site-specific conditions of different catchments, and formalized criteria for defining CSOs should be used to examine the management plans.

Derivation of Probable Rainfall Intensity Formula Using Genetic Algorithm (유전자 알고리즘을 이용한 확률강우강도식의 산정)

  • La, Chang-Jin;Kim, Joong-Hoon;Lee, Eun-Tai;Ahn, Won-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.1 no.1 s.1
    • /
    • pp.103-115
    • /
    • 2001
  • The current procedure to design hydraulic structures in a small basin area is to estimate the probable rainfall depth using rainfall intensity formula. The estimation of probable rainfall depth has many uncertainties inherent with it. However, it has been inevitable to simplify the nonlinearity if the rainfall in practice. This study attend to address a method which can model the nonlinearity in order to derive better rainfall intensity formula for the estimation of probable rainfall depth. The results show that genetic algorithm is more reliable and accurate than trial-and-error method or nonlinear programming technique(Powell's method) in the derivation of the rainfall intensity formula.

  • PDF

Probability Characteristics of Probable Rainfall and Recorded Maximum Rainfall in Korea. (한국주요지점에 대한 확률강우량과 관측최대강우량의 확률분석)

  • Jeong, Mahn;Lee, Jong-Kyu
    • Water for future
    • /
    • v.14 no.3
    • /
    • pp.47-54
    • /
    • 1981
  • The characteristics of point rainfall for three different durations in Seoul Pusan Taegu and Gwangju have been analysed by the probabilistic ainfall method and the M-year maximum rainfall method. The probabilities that the T-year probabilistic rainfall did not occur during the observation period, compared with the values obtained from the observed data. were smaller than the theoretical values. The averages of the probabilities that the M-year maximum-ten-minute rainfall did not occur in the consequent N-years were larger than the theoretical values, the M-year maximumone hour rainfall were smaller than the theoretical ones, and the M-year maximum daily rainfall nearly agreed with them, and while those of Japan were smaller than the theoretical values. It is recommended from the results that the recorded maximum value should be used as a design value rather than the probabilistic rainfall.

  • PDF

Estimating design floods based on bivariate rainfall frequency analysis and rainfall-runoff model (이변량 강우 빈도분석과 강우-유출 모형에 기반한 설계 홍수량 산정 방안)

  • Kim, Min Ji;Park, Kyung Woon;Kim, Seok-Woo;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.10
    • /
    • pp.737-748
    • /
    • 2022
  • Due to the lack of flood data, the water engineering practice calculates the design flood using rainfall frequency analysis and rainfall-runoff model. However, the rainfall frequency analysis for arbitrary duration does not reflect the regional characteristics of the duration and amount of storm event. This study proposed a practical method to calculate the design flood in a watershed considering the characteristics of storm event, based on the bivariate rainfall frequency analysis. After extracting independent storm events for the Pyeongchang River basin and the upper Namhangang River basin, we performed the bivariate rainfall frequency analysis to determine the design storm events of various return periods, and calculated the design floods using the HEC-1 model. We compared the design floods based on the bivariate rainfall frequency analysis (DF_BRFA) with those estimated by the flood frequency analysis (DF_FFA), and those estimated by the HEC-1 with the univariate rainfall frequency analysis (DF_URFA). In the case of the Pyeongchang River basin, except for the 100-year flood, the average error of the DF_BRFA was 11.6%, which was the closest to the DF_FFA. In the case of the Namhangang River basin, the average error of the DF_BRFA was about 10%, which was the most similar to the DF_FFA. As the return period increased, the DF_URFA was calculated to be much larger than the DF_FFA, whereas the BRFA produced smaller average error in the design flood than the URFA. When the proposed method is used to calculate design flood in an ungauged watershed, it is expected that the estimated design flood might be close to the actual DF_FFA. Thus, the design of the hydrological structures and water resource plans can be carried out economically and reasonably.

The Regional Rainfall Intensity Formula Development Considering Climate Change of Gimhae City (기후변화를 고려한 김해시의 지역별 확률강우강도식 개발)

  • Woo, Sun-Bong;Park, Jong-Kil;Choi, Sun-Ho;Yoon, Jong-Sung
    • Journal of Environmental Science International
    • /
    • v.23 no.11
    • /
    • pp.1775-1790
    • /
    • 2014
  • The regional rainfall intensity formula for Gimhae in Gyeongsangnam-do province is developed in this study. The nine points of rainfall observations were selected. In order to demonstrate the accuracy and the versatility of the proposed rainfall intensity formula, three regions under the jurisdiction of the Meteorological Agency near Gimhae, namely Busan, Changwon, Miryang observatories were selected. The present formula can be effectively employed for various design of hydraulic structures in Gimhae area since it is divided into several refined regions.

Comparison of Urban Runoff Models for Interior Drainage in Urban Basin (도시유역의 내수배제를 위한 도시유출모델의 비교)

  • Choi, Yun-Young;Lee, Yeong-Hwal;Jee, Hong-Kee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.3
    • /
    • pp.251-259
    • /
    • 2000
  • In this study, the urban runoff models, ILLUDAS model and SWMM, are analyzed the probable peak discharge and discharge using rainfall distribution by Huff's method at Bum-uh chun area in Taegu city. The probability rainfall and intensity is analyzed by Pearson-III type. The rainfall duration, 90 minutes, is determined by the critical duration computed the maximun peak discharge for some rainfall durations. The peak discharge according to Huff's rainfall distribution types compute in order of type 3, type 4, type2, and type 1, so Huff's 3 type is selected as an adequate rainfall distribution in Bum-uh chun basin. ILLUDAS model and SWMM are shown as good models in Bum-uh chun, but SWMM is computed higher peak discharge than ILLUDAS model, so SWMM is shown as the adequate urban runoff model for the design of interior drainage in urban basin.

  • PDF