• 제목/요약/키워드: Design Margin

검색결과 768건 처리시간 0.032초

서지 마진 증가를 고려한 원심 압축기 설계 최적화 (A Study on Centrifugal Compressor Design Optimization for Increasing Surge Margin)

  • 최재호
    • 한국유체기계학회 논문집
    • /
    • 제11권2호
    • /
    • pp.38-45
    • /
    • 2008
  • This study presents a numerical procedure to optimize the compressor design to increase the surge margin of compressor with response surface method (RSM). The Box-Behnken design method is used to reduce the number of calculation for fitting the second-order response surface. In order to consider the increase of surge margin during numerical optimization without any calculation at the surge point, the slope of compressor characteristic curve at the design point is suggested as an objective function in the present optimization problem. Mean line performance analysis method is used to get the design and off-design characteristic curves of centrifugal compressor. The impeller exit angle, impeller exit height and impeller radius are chosen as design variables. The optimum shapes show the increase of surge margin for the surge margin optimization and increase of efficiency for the efficiency optimization in comparison with an initial shape.

Controller Design of the 2nd-order System Based on Phase Margin Specifications

  • Lee, Bo-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.54.3-54
    • /
    • 2001
  • This paper presents a controller design technique for standard 2nd-order system satisfying user-specified phase margin. A simple method is presented to meet stability margin for the 2nd-order system, which is important since the 2nd-order plant models are frequently encountered in the practical plant models such as actuators of the optical drive systems. Through the comparison of the specified stability margin and achieved stability margin, it is shown in the simple example that the proposed technique is useful in the initial design of control systems with stability margin specifications.

  • PDF

A Heuristic Application of Critical Power Ratio to Pressurized Water Reactor Core Design

  • Ahn, Seung-Hoon;Jeun, Gyoo-Dong
    • Nuclear Engineering and Technology
    • /
    • 제34권1호
    • /
    • pp.68-79
    • /
    • 2002
  • The approach for evaluating the critical heat flux (CHF) margin using the departure from nucleate boiling ratio (DNBR) concept has been widely applied to PWR core design, while DNBR in this approach does not indicate appropriately the CHF margin in terms of the attainable power margin-to-CHF against a reactor core condition. The CHF power margin must be calculated by increasing power until the minimum DNBR reaches a DNBR limit. The Critical Power Ratio (CPR), defined as the ratio of the predicted CHF power to the operating power, is considered more reasonable for indicating the CHF margin and can be calculated by a CPR orrelation based on the heat balance of a test bundle. This approach yields directly the CHF power margin, but the calculated CPR must be corrected to compensate for many local effects of the actual core, which are not considered in the CHF test and analysis. In this paper, correction of the calculated CPR is made so that it may become equal to the DNB overpower margin. Exemplary calculations showed that the correction tends to be increased as power distribution is more distorted, but are not unduly large.

모델 불확실성을 고려한 변형된 IMC-PID 제어기 설계 (A Modified IMC-PID Controller Design Considering Model Uncertainty)

  • 김창현;임동균;서병설
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.128-130
    • /
    • 2005
  • This paper proposes a modified IMC-PID controller that introduces controlling factor of the system identification to the standard IMC-PID controller in order to meet the design specifications such as gain, phase margin and maximum magnitude of sensitivity function in the frequency domain as well as the design specifications in time domain, settling, rising time and overshoot, and so on.

  • PDF

연료전지용 터보 공기압축기의 설계 및 시험평가 (Design and Experimental Study on a Turbo Air Compressor for Fuel Cell Applications)

  • 최재호
    • 한국수소및신에너지학회논문집
    • /
    • 제19권1호
    • /
    • pp.26-34
    • /
    • 2008
  • This study presents an aerodynamic design and an experimental performance test of a turbo air compressor consisted of mixed-flow impeller and curved diffuser for the PEM fuel cell vehicle application. Many studies compare the efficiency, cost or noise level of high-pressure and low-pressure operation of PEM fuel cell systems. Pressure ratio 2.2:1 is considered as design target The goal of compressor design is to enlarge the flow margin of compressor from surge to choke mass flow rate to cover the operational envelope of FCV. Large-scale rig test is performed to evaluate the compressor performance and to compare the effects of compressor exit pipe volume to stall or surge characteristics. The results show that the mixed-flow compressor designed has large flow margin, and the flow margin of compressor configuration with small exit volume is larger than that with large exit volume.

Verification for the design limit margin of the power device using the HALT reliability test

  • Chang, YuShin
    • 한국컴퓨터정보학회논문지
    • /
    • 제23권11호
    • /
    • pp.67-74
    • /
    • 2018
  • The verification for the design limit margin of the power device for the information communication and surveillance systems using HALT(Highly Accelerated Life Test) reliability test is described. The HALT reliability test performs with a step stress method which change condition until the marginal step in a design and development phase. The HALT test methods are the low temperature(cold) step stress test, the high temperature(hot) step stress test, the thermal shock cyclic stess test, and the high temperature destruct limit(hot DL) step stress test. The power device is checked the operating performance during the test. In this paper, the HALT was performed to find out the design limit margin of the power device.

신규원전 여유도 관리 방안 연구 (A Study on the method of Margin Management for New Nuclear Power Plant)

  • 박유진
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2018년도 춘계 학술논문 발표대회
    • /
    • pp.151-152
    • /
    • 2018
  • In the domestic nuclear power industry, concern about safety of nuclear power plants is continuously increased with the Fukushima nuclear power plant accident. In order to enhance the safety of nuclear power plants, it is important to ensure that the power plants are operating with proper margin within the original design bases. Margin management is the process of ensuring that the NPP designer and operator are aware of the physical and operating limits, and potential and probability of failure, for each component in the plant. All components are subject to margin considerations, but the most important components by scope and attention are those related to safety-related systems and NPP safe shutdown.

  • PDF

Influence of preparation design on fracture resistance of different monolithic zirconia crowns: A comparative study

  • Findakly, Meelad Basil;Jasim, Haider Hasan
    • The Journal of Advanced Prosthodontics
    • /
    • 제11권6호
    • /
    • pp.324-330
    • /
    • 2019
  • PURPOSE. The aim of the study was to evaluate and compare the fracture resistance and modes of fracture of monolithic zirconia crowns with two preparation designs. MATERIALS AND METHODS. Forty human maxillary first premolar teeth were extracted for orthodontic purposes and divided into two main groups (n=20): Group A: monolithic traditional zirconia; Group B: monolithic translucent zirconia. The groups were further subdivided into two subgroups (n=10): (A1, B1) shoulder margin design; (A2, B2) feather-edge margin design. Teeth were prepared with either a 1 mm shoulder margin design or a feather-edge margin design. The prepared teeth were scanned using a digital intraoral scanner. The crowns were cemented using self-adhesive resin cement. All cemented teeth were stored in water for 7 days and thermocycling was done before testing. All samples were subjected to compressive axial loading until fracture. The fractographic analysis was done to assess the modes of fracture of the tested samples. RESULTS. The highest mean values of fracture resistance were recorded in kilo-newton and were in the order of subgroup A1 (2.903); subgroup A2 (2.3); subgroup B1 (1.854) and subgroup B2 (1.523). One-way ANOVA showed a statistically significant difference among the 4 subgroups. Concerning modes of fracture, the majority of samples in subgroups A1 and B1 were fracture of restoration and/or tooth, while in subgroups A2 and B2, the majority of samples fractured through the central fossa. CONCLUSION. Even though all the tested crowns fractured at a higher level than the maximum occlusal forces, the shoulder margin design was better than the feather-edge margin design and the monolithic traditional zirconia was better than the monolithic translucent zirconia in terms of fracture strength.

Influence of Crown Margin Design on the Stress Distribution in Maxillary Canine Restored by All-Ceramic Crown: A Finite Element Analysis

  • Ozer, Zafer;Kurtoglu, Cem;Mamedov, Amirullah M.;Ozbay, Ekmel
    • Journal of Korean Dental Science
    • /
    • 제8권1호
    • /
    • pp.28-35
    • /
    • 2015
  • Purpose: To investigate the influence of crown margin design on the stress distribution and to localize critical sites in maxillary canine under functional loading by using three dimensional finite element analysis. Materials and Methods: The bite force of 100 N, 150 N, and 200 N was applied with an angulation of $45^{\circ}$ to the longitudinal axis of tooth. Six models were restored with IPS e.max (Ivoclar Vivadent, Schaan, Liechtenstein) with a different margin design. With lingual ledge and various thicknesses, three different core ceramics were designed in each model. Result: In the core ceramic, the maximum tensile stresses were found at the labiocervical region. In the veneering ceramic the maximum tensile stresses were found at the area where the force was applied in all models. Conclusion: Shoulder and chamfer margin types are acceptable for all-ceramic rehabilitations. A ledge on the core ceramic at cervical region may affect the strength of all-ceramic crowns.

A Study on Development of a Plugging Margin Evaluation Method Taking Into Account the Fouling of Shell-and-Tube Heat Exchangers

  • Hwang, Kyeong-Mo;Jin, Tae-Eun;Kim, Kyung-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • 제20권11호
    • /
    • pp.1934-1941
    • /
    • 2006
  • As the operating time of heat exchangers progresses, fouling caused by water-borne deposits and the number of plugged tubes increase and thermal performance decreases. Both fouling and tube plugging are known to interfere with normal flow characteristics and to reduce thermal efficiencies of heat exchangers. The heat exchangers of Korean nuclear power plants have been analyzed in terms of heat transfer rate and overall heat transfer coefficient as a means of heat exchanger management. Except for fouling resulting from the operation of heat exchangers, all the tubes of heat exchangers have been replaced when the number of plugged tubes exceeded the plugging criteria based on design performance sheet. This paper describes a plugging margin evaluation method taking into account the fouling of shell-and-tube heat exchangers. The method can evaluate thermal performance, estimate future fouling variation, and consider current fouling level in the calculation of plugging margin. To identify the effectiveness of the developed method, fouling and plugging margin evaluations were performed at a component cooling heat exchanger in a Korean nuclear power plant.