• Title/Summary/Keyword: Design Hydrograph

Search Result 100, Processing Time 0.029 seconds

A Determination of Design Flood for a small Basin by Unit Hydrograph Method (단위유량도법에 의한 소유역의 계획홍수량 결정)

  • 윤용남;침순보
    • Water for future
    • /
    • v.9 no.2
    • /
    • pp.76-86
    • /
    • 1976
  • The 30-year design flood hydrograph for the Musim Representative Basin, one of the study basins of the International Hydrological Program, is synthesized by the method of unit hydrograph. The theory of unit hydrograph has been well known for a long time. However, the synthesis of flood hydrograph by this method for a basin with insufficient hydrologic data is not an easy task and hence, assumptions and engineering judgement must be exercized. In this paper, the problems often encountered in applying the unit hydrograph method are exposed and solved in detail based on the theory and rational judgement. The probability rainfall for Cheonju Station is transposed to the Musim Basin since it has not been analyzed due to short period of rainfall record. The duration of design rainfall was estimated based on the time of concentration for the watershed. The effective rainfall was determined from the design rainfall using the SCS method which is commonly used for a small basin. The spatial distribution of significant storms was expressed as a dimensionless rainfall mass curve and hence, it was possible to determine the hyetograph of effective design storm. To synthesize the direct runoff hydrograph the 15-min. unit hydrograph was derived by the S-Curve method from the 1-hr unit hydrograph which was obtained from the observed rainfall and runoff data, and then it was applied to the design hyetograph. The exsisting maximum groundwater depletion curve was derived by the base flow seperation. Hence, the design flood hydrograph was obtained by superimposing the groundwater depletion curve to the computed direct runoff hydrograph resulting from the design storm.

  • PDF

Estimation of Design Discharge Considering Nonstationarity for River Restoration in the Mokgamcheon (목감천 복원설계를 위한 비정상성을 고려한 설계홍수량의 산정)

  • Lee, Kil Seong;Oh, Jin-Ho;Park, Kidoo;Sung, Jang-Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1361-1375
    • /
    • 2013
  • The design flow considering nonstationarity is estimated to determine the design flood related to hydraulic structure quantitatively based on the design process for stream restoration in the Mokgamcheon watershed proposed by Lee et al. (2011). The purpose of this research is to suggest new ways that the design flood was calculated considering nonstationarity at the Mokgamcheon watershed. Storm-unit hydrograph method to calculate design flood and direct frequency analysis were applied and nonstationarity was considered for the frequency analysis through extRemes toolkit developed at NCAR (National Center for Atmospheric Research). Although the method of direct flood frequency analysis due to dealing with flowrates directly has a more reliable than strom-unit hydrograph method, as a result, the method of direct flood frequency analysis underestimated the design flood than strom-unit hydrograph method due to the characteristics of the flow data. Therefore, the flood of storm-unit hydrograph method (100 years frequency) was determined as the design flood in the Mokgamcheon watershed.

A Study on Hydrologic Analysis and Some Effects of Urbanization on Design Flow of Urban Storm Drainage Systems (1) (도시 하수도망의 수문학적인 평가와 설계확률유량의 점대화 성향에 관한 연구(제1보))

  • 강관원;서병하;윤용남
    • Water for future
    • /
    • v.14 no.4
    • /
    • pp.27-34
    • /
    • 1981
  • The design flow of the urban strom drainage systems has been assessed largely on a basis of empirical relations between rainfall and runoff, and the rational formula has been widely used for the cities in our country. In order to estimate it more accurately, the urban runoff simulation model based on the RRl method has been developed and applied to the sample basin in this study. The rainfall hyetograph of the design stromfor the design flow has been obtained by the determination of the total rainfall and the temporal distributions of that rainfall. The total rainfall has been assessed from the empirical formula of rainfall intensity and the temporal distribution of that rainfall determined on the basis of Huff's method from the historical rainfall data of the basin. The virtual inflow hydrograph to each inlet of the basin has been constructed by computing the series of discharges in each time increment, using design strom hyetograph and time-area diagram. The actual runoff hydrograph at the basin outlet has been computed from the virtual inflow hydrographs by developing a relations between discharge and storage for the watershed. The discharge data for verification of the simulated runoff hydrograph are not available in the sample basin and so the sensitivity analysis of the simulation model has not been possible. The peak discharge for the design of drainage systems has been estimated from the computed runoff hydrograph at the basin outlet and compared to thatl obtained form the rational formula.

  • PDF

Revision of Snyder's Coefficient for Synthesizing Uint Hydrograph (단위유량도합성을 위한 Snyder 계수의 조정)

  • 선우중호;고영찬
    • Water for future
    • /
    • v.19 no.1
    • /
    • pp.57-63
    • /
    • 1986
  • The synthetic unit hydrograph is commonly used for the derivation of a design hydregraph. The existing Snyder's equation for the syntheses of unit hydrograph was found to give relatively a flat hydrograph in comparison with observed hydrograph and a revision is required. HEC-1 model is used to simulated observed hydrograhp in the South Han River basin and results are used as an input for the regression. The basin is subdivided into small drainage areas and the synthesized hydrograph is routed through channels. After the calculated hydrographs are compared with observed one, the synthesized hydrograph of each subbasisn is revised and the new snyder's equation is derived . The revised equation gives rapid increase of discharge in rising limb and larger peak.

  • PDF

Peak Discharge Change by Dirrerent Design Rainfall on Small Watershed

  • Jun, Byong-Ho;Jang, Suk-Hwan
    • Korean Journal of Hydrosciences
    • /
    • v.3
    • /
    • pp.97-104
    • /
    • 1992
  • To design the minor structures in the small watersheds, it is required to calculate the peak discharge. For these calculations the simple peak flow prediction equations, the unit hydrograph method. the syntheic unit hydrograph methods or the runoff simulation models are adopted. To use these methods it is generally requried to know the amount and the distributions of the design rainfall; which are the uniform distribution, the trangular distribution, the trapezoidal distribution, or the Huff type distribution. In this study, the peak discharges are calculated by the different rainfall distributions and the results are compared.

  • PDF

A study on the flood runoff analysis with TANK MODEL (탱크 모델에 의한 홍수(洪水) 유출량(流出量) 해석(解析)에 관(關)한 연구(硏究))

  • Hong, Chang-sun;Choi, Han-kuy
    • Journal of Industrial Technology
    • /
    • v.3
    • /
    • pp.95-101
    • /
    • 1983
  • This study aims at the determination of the coefficienties of runoff and infiltration affecting runoff. The rating curve is more available than the peak flood runoff to determine flood control plan of flood control reservoir and the volume of hydroelectric power plant, or to make multipurpose dam. In hydrologic analysis and design, it is necessary to develop relations between precipitation and runoff, possible using some of the factors affecting runoff as parameters. In order to calculate the runoff discharge, the runoff process constituting elements are divided to the surface runoff, the subsurface runoff and the groundwater runoff. By comparing the computed hydrograph with the measured hydrograph, determinned the watershed TANK Model constant Varying the tank model constant for approximating the computed hydrograph to the measured hydrograph.

  • PDF

A Study on Parameters-Calibration for the Tank Model (탱크모형의 매개변수 검정에 관한 연구)

  • Seo, Yeong-Je
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.4
    • /
    • pp.327-334
    • /
    • 1997
  • The purpose of this study is to calibrate the parameters of tank model for the derivation of a design flood hydrograph at a certain river basin outlet. The selected stations are Gongju and Naju station which are located in the Keum and the Youngsan river basin, respectively. The results of parameters calibration for tank model are represented a little different values comparing with the proposed values at Gongju station through the verification of flood hydrograph in modeling procedure but the values of tank parameters at Naju station are fitted well for the derivation of flood hydrograph using the proposed design parameters of tank model.

  • PDF

Development of Flood Analysis Module for the Implementation of a Web-Based Flood Management System (웹기반 홍수관리시스템 구현을 위한 홍수분석모듈개발)

  • Jung, In Kyun;Park, Jong Yoon;Kim, Seong Joon;Jang, Cheol Hee
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.6
    • /
    • pp.103-111
    • /
    • 2014
  • This study was to develop the flood analysis module (FAM) for implementation of a web-based real-time agricultural flood management system. The FAM was developed to apply for an individual watershed, including agricultural reservoir. This module calculates the flood inflow hydrograph to the reservoir using effective rainfall by NRCS-CN method and unit hydrograph calculated by Clark, SCS, and Nakayasu synthetic unit hydrograph methods, and then perform the reservoir routing by modified Puls method. It was programmed to consider the automatic reservoir operation method (AutoROM) based on flood control water level of reservoir. For a $15.7km^2$ Gyeryong watershed including $472{\times}10^4m^3$ agricultural reservoir, rainfall loss, rainfall excess, peak inflow, total inflow, maximum discharge, and maximum water level for each duration time were compared between the FAM and HEC-HMS (applied SCS and Clark unit hydrograph methods). The FAM results showed entirely consistent for all components with simulated results by HEC-HMS. It means that the applied methods to the FAM were implemented properly.

The Development of Synthetic Unit Hydrograph Suitable to the Hydrologic Characteristics in Korea (국내 수문특성에 적합한 합성단위도의 개발)

  • Jeong, Seong-Won;Mun, Jang-Won
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.6
    • /
    • pp.627-640
    • /
    • 2001
  • Generally, the synthetic unit hydrograph method is presented to estimate the design flood in the ungaged watershed. However, due to the lack of rainfall-runoff data, the models developed in other countries such as U.S.A. and Japan have been widely used in Korea. Therefore, it may be essential to develope the rainfall-runoff model suitable for the hydrological char-acteristics in Korea. In this study, the representative unit hydrographs are derived from rainfall-runoff data at 19 basins in Selma-Cheon and 3-IHP experimental watersheds using ridge-regression method and Nash model. And a new synthetic unit hydrograph for Korea is suggested by integrating the described results and previous studies on unit hydrograph. The newly developed method is represented as two regression forms with three independent variables of watershed area, channel length, and channel slope by multiple regression analysis is carried out for each watershed, the coefficients of determination are not improved in all cases compared out for each watershed, the coefficients of determination are not improved n all cased the synthetic unit hydrograph for each watershed. Therefore, when the new method is applied to some watersheds, the result analyzed for all data has to be used.

  • PDF