• Title/Summary/Keyword: Design Function

Search Result 11,115, Processing Time 0.044 seconds

Design of an Axial-flow Pump Using a Genetic Optimization Technique (유전적 최적화 기법을 이용한 축류 펌프의 설계)

  • Song, Jae-Wook;Oh, Jae-Min;Chung, Myung-Kyoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.6
    • /
    • pp.795-804
    • /
    • 2002
  • The optimal design code of an axial flow pump has been developed to determine geometric and fluid dynamic variables under hydrodynamic as well as mechanical design constraints. The design code includes the optimization of the complete radial distribution of the geometry by determining the coefficients of 2$^{nd}$ order polynomials to represent the three-dimensional geometry. The optimization problem has been formulated with a nonlinear multivariable objective function, maximizing the efficiency and stall margin, while minimizing the net positive suction head required. Calculation of the objective function is based on the mean streamline analysis and through-flow analysis using the present state-of-the-art model. The optimal solution is calculated using the penalty function method in which the genetic optimizer is employed. The optimized efficiency and design variables are presented in this paper as a function of non-dimensional specific speed in the range, 2$\leq$ $n_{s}$ $\leq$10. The results can be used in preliminary design of axial flow pumps.

Representation of 3 Dimensional Automobile Configurations with Vehicle Modeling Function for a Shape Optimization (형상 최적화를 위한 Vehicle Modeling Function 을 이용한 자동차 3 차원 형상 구현)

  • Rho, Joo-Hyun;Ku, Yo-Cheon;Yun, Su-Hwan;Lee, Dong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1057-1062
    • /
    • 2008
  • Representing a complex, three-dimensional shape, such as an automobile, requires a large amount of CAD data consisting of millions of approximated discontinuous points, which makes it difficult or even impossible to efficiently optimize the entire shape. For this reason, in this paper, function based design method is proposed to optimize the external shape of an automobile. A vehicle modeling function was defined in the form of a Bernstein polynomial to smoothly express the complex 2D and 3D automobile configurations. The sub-sectional parts of the vehicle modeling function are defined as section functions through classifying each subsection of a box model. It is shown that the use of the vehicle modeling functions has the useful advantages in an aerodynamic shape optimization.

  • PDF

Decision Making Method based on Function and Performance Matrix Assessment Considering Design Change

  • Oh, Youngsuk;Chun, Jaeyoul;Cho, Jaeho
    • Architectural research
    • /
    • v.17 no.3
    • /
    • pp.83-91
    • /
    • 2015
  • A comprehensive understanding of functions and performances enables a selection of appropriate alternatives to the existing design and can prevent defective design. A performance-based design quality management can ensure successful project completion. This study proposes a new model for design quality management in order to prevent defective design and to minimize design change. The new quality management model defines the requirement about function and performance based on technical characteristic, and assesses suitability for design alternatives. This study attempts to propose a quality matrix assessment method that can compare the alternative design and requirements defined with the new quality management model. This method can judge conformity and suitability of design quality in accordance with the requirements configured.

Development of Polynomial Based Response Surface Approximations Using Classifier Systems (분류시스템을 이용한 다항식기반 반응표면 근사화 모델링)

  • 이종수
    • Korean Journal of Computational Design and Engineering
    • /
    • v.5 no.2
    • /
    • pp.127-135
    • /
    • 2000
  • Emergent computing paradigms such as genetic algorithms have found increased use in problems in engineering design. These computational tools have been shown to be applicable in the solution of generically difficult design optimization problems characterized by nonconvexities in the design space and the presence of discrete and integer design variables. Another aspect of these computational paradigms that have been lumped under the bread subject category of soft computing, is the domain of artificial intelligence, knowledge-based expert system, and machine learning. The paper explores a machine learning paradigm referred to as teaming classifier systems to construct the high-quality global function approximations between the design variables and a response function for subsequent use in design optimization. A classifier system is a machine teaming system which learns syntactically simple string rules, called classifiers for guiding the system's performance in an arbitrary environment. The capability of a learning classifier system facilitates the adaptive selection of the optimal number of training data according to the noise and multimodality in the design space of interest. The present study used the polynomial based response surface as global function approximation tools and showed its effectiveness in the improvement on the approximation performance.

  • PDF

The Function Construction based on Modular Design Technique (모듈러 설계기법에 기초한 함수구성)

  • Park, Chun-Myoung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.918-919
    • /
    • 2012
  • This paper present a method of function decomposition and input variable manipulation method based on modular design techniques. We obtain the column multiplicity of decomposition function according to row decomposition method. Also, the proposed partial decomposition function have advantage which is able to omit control function using t-Gate. We find the advantage for internal connection decrement 12% and T-gate number 16%, therefore we find the simple design circuit.

  • PDF

A Study on Constraint Accumulation in Mathematical Programming Problems Using Envelope Functions (덮개 함수를 이용한 제한 조건 누적 최적화 기법에 관한 연구)

  • Lee, Byeong-Chae;Lee, Jeong-Jun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.720-730
    • /
    • 2002
  • Automated design of large structures requires efficient and accurate optimization algorithms because of a large number of design variables and design constraints. The objective of this study is to examine the characteristics of the Kreisselmeier -Steinhauser envelope function and to investigate va tidily of accumulating constraint functions into a small number of constraint functions or even into a single constraint function. The commercial package DOT is adopted as a local optimizer. The optimum results using the envelope function are compared with those of the conventional method for a number of numerical examples and the differences between them are shown to be negligible.

Function Approximation Using an Enhanced Two-Point Diagonal Quadratic Approximation (개선된 이점 대각 이차 근사화를 이용한 함수 근사화)

  • Kim, Jong-Rip;Kang, Woo-Jin;Choi, Dong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.4
    • /
    • pp.475-480
    • /
    • 2004
  • Function approximation is one of the most important and active research fields in design optimization. Accurate function approximations can reduce the repetitive computational effort fur system analysis. So this study presents an enhanced two-point diagonal quadratic approximation method. The proposed method is based on the Two-point Diagonal Quadratic Approximation method. But unlike TDQA, the suggested method has two quadratic terms, the diagonal term and the correction term. Therefore this method overcomes the disadvantage of TDQA when the derivatives of two design points are same signed values. And in the proposed method, both the approximate function and derivative values at two design points are equal to the exact counterparts whether the signs of derivatives at two design points are the same or not. Several numerical examples are presented to show the merits of the proposed method compared to the other forms used in the literature.

A Study on the characteristics of Philippe Starck's furniture design (필립 스탁의 가구디자인 특성에 관한 연구)

  • Park, So-La
    • Korean Institute of Interior Design Journal
    • /
    • v.17 no.1
    • /
    • pp.162-169
    • /
    • 2008
  • Philippe Starck is a famous french designer known for his creative works in all aspects of life from architectural space to product design. Especially, in regard to furniture, he designed more than 250 works with various design characteristics. This study therefore aims to examinate the characteristics of furniture designed by Philippe Starck through assessment of his design background and philosophy, evaluation of fifty or so of his works in terms of their function, form, material, and emotions, and lastly through a chronological analysis. As a result from this study, following various results are drawn as design characteristic through forty six representative cases: 1) possibility of fabrication and transformation 2) multi-function or optional function for user 3) pursuit of simplicity using the characteristic of singular material or mono block and immateriality 4) emotional approach in design 5) non-design method such as use of archetype or historical form.

Optimization of Injection Molding Design Using Two-Characteristic Value Function Methodology (두 특성의 가치함수를 이용한 사출성형의 최적 설계)

  • Park, Jong-Cheon;Kim, Kyung-Mo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.1
    • /
    • pp.36-43
    • /
    • 2015
  • Optimizing multiple design characteristics which are usually in conflict with each other in the injection molding process is frequently becoming a critical problem for designers who work in this area. The purpose of this work is to develop an automated design methodology for optimizing two such design characteristics found in injection-molded parts. A value function based on decision-making theory is used as a means of evaluating the performance of a two-characteristic design alternative. Also, a design space reduction algorithm based on Taguchi's orthogonal arrays is utilized to discover an optimal design alternative. Verification of the developed design methodology is carried out for an actual model with two design characteristics, the weld line and the gate location, to be optimized in computer simulation experiments.

Optimum Cam Profile Design of VTR Deck Using the Response Stuface Analysis (반응표면분석법을 이용한 VTR Deck 캠의 최적형상 설계)

  • Han, Hyeong-Seok;An, Hyeong-Jin;Park, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.3
    • /
    • pp.788-795
    • /
    • 1996
  • In this paper, and optimum profile of a cam being used in a VTR Deck mechanism is designed by the response surface analysis. The objective function of the design is to reduce driving torque of the pinch roller system that is used to compress video tape to the capstan motor axia. The pinch roller system that will be designed is modeled using the general purpopse mechanism analysis program DADS. The computer model is compared with the physical system for reliability. A model function to represent relationship between design variables and the objective function is estimated by the response surface analysis. Once the model function is reliably estimated the optimal design is carried out using the model function and each design variable's boundaries. To verify improvement of the pinch roller system, a prototype for the pinch rooler system is made and tested. From the test result, an optimum cam profile to resuce driving torque of the pinch roller system is verified.