• Title/Summary/Keyword: Design Force

Search Result 5,703, Processing Time 0.035 seconds

Advanced Internal Cooling Passage of Turbine Blade using Coriolis Force (전항력을 이용한 회전 블레이드 냉각성능 향상 방안 연구)

  • Park, Jun Su
    • Journal of Institute of Convergence Technology
    • /
    • v.6 no.1
    • /
    • pp.37-41
    • /
    • 2016
  • The serpentine internal passage is located in turbine blade and it shows the variety heat transfer distribution. Especially, the Coriolis force, which is induced by blade rotation, makes different heat transfer distribution of the leading and trailing surfaces of serpentine internal passage. The different heat transfer is one of the reasons why the serpentine cooling passage shows low cooling performance in the rotating condition. So, this study tried to design the advanced the serpentine passage to consideration of the Coriolis force. The design concept of advanced serpentine cooling is maximizing cooling performance using the Coriolis force. So, the flow turns from leading surface to trailing surface in advanced serpentine passage to match the direction of Coriolis force and rotating force. We performed numerical analysis using CFX and compared the existing and advanced serpentine internal passage. This design change is induced the high heat transfer distribution of whole advanced serpentine internal passage surfaces.

A COMPARATIVE STUDY ON THE DISLODGING FORCE OF MAGNETIC ATTACHMENT TO THE DENTURE RESIN BY MAGNETIC DESIGN AND FIXING MATERIALS

  • Lee, Jung-Hwa;Lee, Jong-Hyuk;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.3
    • /
    • pp.261-268
    • /
    • 2008
  • STATEMENT OF PROBLEM: Detachment of the magnetic assembly from the denture base has been a problem in magnetic overdenture patients. PURPOSE: The objectives of this study were to compare the dislodging force by the fixing materials and the designs of the magnetic assembly, and to compare the effect between the fixing materials and the designs of the magnetic assembly. MATERIAL AND METHODS: Two fixing materials, Jet denture repair $acrylic^{(R)}$ and Super-$Bond^{(R)}$ C&$B^{(R)}$ and two types of magnetic assembly designed with or without wing were used. Each magnetic assembly was fixed in the chamber of the denture base resin block ($Lucitone^{(R)}$199) with each fixing material respectively. These specimens were thermocycled 2,000 cycles in the water held at $4^{\circ}C$ and $60^{\circ}C$ with a dwell time of 1 min each time. Each specimen was seated in a testing jig and then a push-out test was performed with a universal testing machine at a cross head speed of 0.5 mm/min to measure the maximum dislodging forces. RESULTS: Comparing the fixing materials, Super-Bond C&$B^{(R)}$ showed superior dislodging force than Jet denture repair $acrylic^{(R)}$. Comparing the design of the magnetic assemblies, the wing design magnetic assembly showed better dislodging force. Combination of the Super-Bond C&$B^{(R)}$ as a fixing material and wing design magnetic assembly revealed a greatest dislodging force. The kind of fixing material was more influential than the type of magnetic assembly. CONCLUSION: The dislodging force of Super-Bond C&$B^{(R)}$ was significantly higher than Jet denture repair $acrylic^{(R)}$. And the dislodging force of magnetic assembly which have wing design was significantly higher than magnetic assembly which have no wing design.

Simultaneous analysis, design and optimization of trusses via force method

  • Kaveh, A.;Bijari, Sh.
    • Structural Engineering and Mechanics
    • /
    • v.65 no.3
    • /
    • pp.233-241
    • /
    • 2018
  • In this paper, the Colliding Bodies Optimization (CBO), Enhanced Colliding Bodies Optimization (ECBO) and Vibrating Particles System (VPS) algorithms and the force method are used for the simultaneous analysis and design of truss structures. The presented technique is applied to the design and analysis of some planer and spatial trusses. An efficient method is introduced using the CBO, ECBO and VPS to design trusses having members of prescribed stress ratios. Finally, the minimum weight design of truss structures is formulated using the CBO, ECBO and VPS algorithms and applied to some benchmark problems from literature. These problems have been designed by using displacement method as analyzer, and here these are solved for the first time using the force method. The accuracy and efficiency of the presented method is examined by comparing the resulting design parameters and structural weight with those of other existing methods.

Optimum Design of Lock Snap-fit Using Design of Experiment (실험계획법을 이용한 이탈방지 스냅핏의 최적설계)

  • Son, In-Seo;Shin, Dong-Kil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.8
    • /
    • pp.378-385
    • /
    • 2017
  • This study investigated the design of a snap fit, which is widely used for fastening plastic parts. We analyzed the assembly mechanism of a lock snapfit, measured the assembly force and separation force based on the design of experiments, and derived a regression equation through an analysis of variance. The response surface methodology was also used. Polybutylene terephthalate was used to fabricate specimens, and the assembly force and separation force were measured using a micro-tensile tester. The length, width, thickness, and interference were considered as factors. A second-order regression model was used to derive the regression equation. The assembly force decreased with increasing length and width, but it increased with increasing thickness and interference. The finite element method was used to analyze the assembly mechanics. The width decreased the assembly force by increasing the ductility. The influences of the factors for low assembly force and high release force were shown to be opposite to each other. It was necessary to design a structure that minimized the assembly force while maintaining an appropriate level of separation force.

Topology Design of Rigid-String Mechanism Using Constraint Force Design Method (구속조건 힘 설계기법을 이용한 강체와 스트링의 위상 최적설계)

  • Heo, Jae-Chung;Yoon, Gil-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.7
    • /
    • pp.745-750
    • /
    • 2012
  • This study extends the constraint force design method allowing topology optimization for planar rigid-link and string mechanisms. To our best knowledge, by applying conventional machine and mechanism design theories, it is likely that it is possible to find out optimal locations of joints and lengths of rigid-links but somewhat difficult to find out optimal topology of rigid-links. To achieve optimal topology of rigid links, there is our previous contribution so called the new constraint force design method with the binary design variables determining the existence of the auxiliary forces imposing apparent lengths among unit masses. By adding new binary design variables, this research extends the constraint force design method to find out optimal mechanism consisting of stringy links as well as rigid links that seems impossible in the conventional machine and mechanism design theories.

An analytical expression for a dynamic optimal design of the stewart platform (스튜어트 플랫폼의 동역학적 최적설계를 위한 해석적인 표현)

  • Kwon, Byung-Hee;Son, Kwon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.175-178
    • /
    • 1997
  • This study was carried out to obtain an analytical expression for the specifications of the Stewart Platform that minimize the maximum force acting on the hydraulic cylinder. The position and orientation of the platform were calculated by means of the inverse kinematic analysis. The maximum force to be exerted on a cylinder was calculated using the Newton's second law for the case when the platform is moved along a horizontal axis with 0.6 g, the maximum translational acceleration possible. This paper suggests a mathematical model to minimize the maximum actuating force using radius and angle ratios as design variables. Finally, a fuzzy set for the minimum actuating force is proposed for this dynamic optimal design problem.

  • PDF

Optimum Design of a Perpendicular Permanent Magnet Double-sided Linear Synchronous Motor using Response Surface Method (반응표면법을 이용한 수직배열형 양측식 영구자석 선형 동기전동기의 최적설계)

  • Kim, Chang-Eob
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.2
    • /
    • pp.26-30
    • /
    • 2016
  • This paper presented an optimum design of a perpendicular PMDSLSM (Permanent Magnet Double-sided Linear Synchronous Motor) to minimize the detent force. As an optimum method, the response surface method was used and 3D finite element method for the calculation. The design variables of the machine were the primary core width and thickness, and magnet width, thickness and length. Object functions were to minimize the detent force and maximize the thrust of the basic model. The results showed that the thrust force of the optimum design increased from 82.1N to 90.2N and detent force decreased from 15.2N to 2.8N, respectively, compared to the basic model.

Simplified equations for Vierendeel design calculations of composite beams with web openings

  • Panedpojaman, Pattamad
    • Steel and Composite Structures
    • /
    • v.27 no.4
    • /
    • pp.401-416
    • /
    • 2018
  • Composite beams with web openings are vulnerable to Vierendeel bending failure. The available methods provide quite conservative estimates of Vierendeel bending resistance. An alternative design method to compute the resistance was proposed in this study, based on quadratic nonlinear interactions of normalized shear force, axial force and Vierendeel bending moment. The interactions of the top and bottom Tee section must satisfy mutual conditions to prevent the Vierendeel failure. The normalized shear force and Vierendeel bending moment of the composite part were used instead in the top Tee interaction. The top Tee axial force was computed based on force equilibrium. Based on a rigid-plastic model, the composite resistance is estimated using an effective slab width of the vertical shear resistance. On using the proposed method, nonlinear reductions due to shear loads and axial forces are not required, in contrast to prior methods. The proposed method was validated against experiments from literature. The method limitations and accuracy as well as the Vierendeel behavior were investigated by finite element simulations, with varied composite beam parameters. The proposed design loads are less conservative than earlier estimates and deviate less from the simulations.

Design and Thrust Force Measurement of LSM for High-Speed Maglev Train (초고속 자기부상열차용 LSM 설계 및 추력 측정 시험)

  • Oh, Se-Young;Lee, Chang-Young;Lee, Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.10
    • /
    • pp.1473-1478
    • /
    • 2014
  • This paper deals with design and thrust force measurement of EMS type LSM for propulsion of the high-speed maglev train. The load of maglev train is calculated, and the design equations of the LSM are presented, and the LSM which is suitable for the operation of short-distance test track is designed. In addition, the finite element analysis is performed to confirm the back-EMF and thrust force characteristics of the LSM designed model. A short length LSM prototype model is manufactured. Finally, the thrust force of the LSM is measured by the method applying dc current to the stator winding instead of three-phase ac current. And the validity of the design and analysis is verified by this measurement.

Force Synchronizing Control for 4 Axes Driven Hydraulic Cylinder-Clamping Load Systems (4축 구동 유압실린더-클램핑 부하 시스템의 힘 동기제어)

  • Cho, S.H.
    • Journal of Drive and Control
    • /
    • v.11 no.2
    • /
    • pp.9-15
    • /
    • 2014
  • This paper deals with the issue of force synchronizing control for the clamping servomechanism of injection molding machines. Prior to the controller design, a virtual design model has been developed for the clamping mechanism with hydraulic systems. Then, a synchronizing controller is designed and combined with an adaptive feedforward control in order to accommodate the mismatches between the real plant and the linear model plant used. As a disturbance, the leakage due to the ring gap with relative motion in the cylinder has been introduced. From the robust force tracking simulations, it is shown that a significant reduction in the force synchronizing error is achieved through the use of a proposed control scheme.