• Title/Summary/Keyword: Design Cost

Search Result 8,470, Processing Time 0.039 seconds

Development of System and Cost Function Model for Life Cycle Cost Analysis of Bridge (교량의 생애주기비용 분석을 위한 비용함수 모델 및 시스템 개발)

  • Park Mi-Yun;Sun Jong-Wan;Eom In-Soo;Cho Hyo-Nam
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.704-711
    • /
    • 2005
  • Recently Life Cycle Cost Analysis for civil infrastructures such as pavements, bridges, and dams has been emphasized However, so far, there are few systems available for life cycle cost analysis of bridges at design stage. Therefore, the objective of this paper is to develop a user-friendly life-cycle cost analysis system for LCC-effective optimal design decision making at design stage. The program is based on the proposed LCC model, formulation, analysis modules and systematic procedure that suit Korean construction conditions. It is expected that the developed system can be effectively utilized for more LCC-effective design of bridges. It is applied to an actual bridge design project in order to demonstrate its effectiveness and applicability.

  • PDF

A Practical Approach for Optimal Design of Pipe Diameters in Pipe Network (배관망에서의 파이프 직경 최적설계에 대한 실용적 해법)

  • Choi Chang-Yong;Ko Sang-Cheol
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.8
    • /
    • pp.635-640
    • /
    • 2006
  • An optimizer has been applied for the optimal design of pipe diameters in the pipe flow network problems. Pipe network flow analysis, which is developed separately, is performed within the interface for the optimization algorithm. A pipe network is chosen for the test, and optimizer GenOpt is applied with Holder-Mead-O'Niell's simplex algorithm after solving the network flow problem by the Newton-Raphson method. As a result, optimally do-signed pipe diameters are successfully obtained which minimize the total design cost. Design cost of pipe flow network can be considered as the sum of pipe installation cost and pump operation cost. In this study, a practical and efficient solution method for the pipe network optimization is presented. Test system is solved for the demonstration of the present optimization technique.

A Life Cycle Cost Analysis in Design and Manufacturing of Production System (생산시스템의 설계/제조에서의 생애비용(LCC)에 관한 연구)

  • 함효준
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.18 no.34
    • /
    • pp.173-183
    • /
    • 1995
  • Life cycle cost has been one of the key criteria in design or purchasing of systems, particularly in the flying weapon system. Unexpected cost increase or system breakdown during the system life can be reduced by controlling maintenance cost A system should be designed for maintainability in early stage of product life cycle. The design should be insensitive to its environmental, organizational, and human factors in the stage of customer's utilization. This paper presents LCC as a controllable variable and also suggests a new control model for LCC analysis. The estimation of maintenance cost based upon maintenance scenario, design of maintainability followed by minimizing maintainability loss function in the beginning stage of design, and increase of useful life of systems are among the factors to control LCC.

  • PDF

Structural Design and Cost Evaluation of Double Hull Bulk Carrier (이중선체 벌크화물선의 선체구조설계 및 경제성 검토)

  • Song, H.C.;Yum, J.S.;Kim, B.I.
    • Journal of Power System Engineering
    • /
    • v.9 no.2
    • /
    • pp.106-111
    • /
    • 2005
  • After many casualties of conventional bulk carriers in recent years, a double hull bulk carrier was proposed to enhance the structural safety of a side shell and a transverse bulkhead. In this paper, two alternative structural designs of a double hull bulk carrier were carried out based on the Lloyd's rule. One has the double sided hull with longitudinal stiffeners and the other has that with a girder. The final structural design was examined in comparison with an existing single hull bulk carrier from the viewpoints of cargo hold capacity and the increases of weight and construction cost. Generally, the construction cost of a ship consists of the costs of material, labor and overhead cost. But, in this study, the relative construction cost concept was introduced to compare the economical validity more precisely. In this concept, fixed overhead cost is excluded in the assessment of construction cost, and only the variable overhead cost is added up to labor cost. As the result of this study, a double hull bulk carrier can be constructed within 1% increase of weight and construction cost.

  • PDF

Optimal design for the reinforced concrete circular isolated footings

  • Lopez-Chavarria, Sandra;Luevanos-Rojas, Arnulfo;Medina-Elizondo, Manuel;Sandoval-Rivas, Ricardo;Velazquez-Santillan, Francisco
    • Advances in Computational Design
    • /
    • v.4 no.3
    • /
    • pp.273-294
    • /
    • 2019
  • In this paper is presented the minimum cost (optimal design) for reinforced concrete circular isolated footings based on an analytic model. This model considers a load and two moments in directions of the X and Y axes, and the pressure has a variation linear, these are the effects that act on the footing. The minimum cost (optimal design) and the Maple program are shown in Flowcharts. Two numerical experiments are shown to obtain the minimum cost design of the two materials that are used for a circular footing supporting an axial load and moments in two directions in accordance to the code of the ACI (American Concrete Institute), and it is compared against the current design (uniform pressure). Also, the same examples are developed through the normal procedure to verify the minimum cost (optimal design) presented in this document, i.e., the equations of moment, bending shear and punching shear are used to check the thickness, and after, the steel areas of the footing are obtained, and it is compared against the current design (uniform pressure). Results section show that the optimal design is more accurate and more economical than to any other model. Therefore, it is concluded that the optimized design model presented in this paper should be used to obtain the minimum cost design for the circular isolated footings.

A Study on the Analysis and Design of IT Cost Model Using an Ethnographic Research (Ethnographic Research를 이용한 IT Cost 모델 분석 및 설계)

  • Lee Jae-Beom;Jeong Seung-Ryul;Lee Hak-Seon
    • The Journal of Information Systems
    • /
    • v.15 no.3
    • /
    • pp.107-129
    • /
    • 2006
  • The purpose of this study is to provide and validate an IT cost model hi which we link among cost center, cost object and flexible cost driver. in order to accomplish this purpose, this study utilizes ethnographic research methodology. At first we develop the cost model where the flexible cost driver is the distribution basis of overhead cost. For each cost driver, unit cost management model is also proposed. Then we employ the structured design methodology to validate the model. Based on the IT Cost requirements of a case company, the IT cost system was designed and developed for its test. The result shows the model we developed in this study is appropriate for managing IT resources and further, can be used as a reference model for calculating chargeback rates of other departments and IT budget of IT department.

  • PDF

Suggestion and Verification of Assessment model on Construction Cost of Steel Box Girder Bridge in Project Performance Phases (사업 수행 단계별 강박스거더교 공사비 산정 모델 제시 및 검증)

  • Jeon, Eun-Kyoung;Kyung, Kab-Soo;Park, Jin-Eun;Kang, Sin-Hwa
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.1
    • /
    • pp.55-65
    • /
    • 2010
  • To effectively secure and execute the national budget, it is very important to estimate the reasonable construction cost of each process in the construction of public facilities and works. The construction cost is generally estimated at the time when the design of the targeted structures has been completed. Without detailed sectional drawings and with only simple information on bridge structures in the planning stage or in the early design stage. it would be very difficult to predict the approximate construction cost. In this study, a more efficient and appropriate approximate construction cost estimation model in the planning stage and in the early design stage is presented and verified as reliable by analyzing the construction cost data of 61 existing steel box girder bridges from previous studies. The results of this study show that when the construction cost that was predicted using the construction cost estimation model in the design stage was compared with the cost from the conventional standards, the suggested model in this study produced results with a very high confidence level.

Optimum Life-Cycle Cost Design of Steel Bridges (강교의 생애주기비용 최적설계)

  • Cho, Hyo-Nam;Lee, Kwang-Min;Kim, Jung-Ho;Choi, Young-Min;Bong, Youn-Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.4 s.65
    • /
    • pp.341-358
    • /
    • 2003
  • This paper proposed a general formulation of Life-Cycle Cost (LCC) models and LCC effective design system models of steel bridges suitable for practical implementation. An LCC model for the optimum design of steel bridges included initial cost and direct/indirect rehabilitation costs of a steel bridge as well as repair/replacement costs, loss of contents or fatality and injury losses, road user costs, and indirect socioeconomic losses. The new road user cost model and regional socioeconomic losses model were especially considered because of the traffic network. Illustrative design examples of an actual steel box girder and an orthotropic steel deck bridge were discussed to demonstrate the LCC effectiveness of the design of steel bridges. Based on the results of the numerical investigation, the LCC-effective optimum design of steel bridges based on the proposed LCC model was found to lead to a more rational, economical, and safer design compared with the initial cost-optimum design and the conventional code-based design.

Efficiency of Design Changes by Comparing the Availability of Excel and the Cost-of-construction Program (엑셀과 적산프로그램의 가용성 비교를 통한 설계변경 업무의 효율성 방안)

  • Ryu, BoHyeun;Jeon, SangHoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.325-326
    • /
    • 2021
  • Design changes are inevitable areas of work for construction engineers as they occur frequently in the construction site, and are becoming a technical measure of the technical person to the design change. In this study, the purpose is to analyze by comparing the availability of excel and the enscised program during design changes through the case, and to present the efficiency of the the Cost-of-construction Program.

  • PDF

Design of Multi-Regional Water Supply System Based on the Optimization Technique (최적화 기법을 이용한 광역상수도 관로시스템 설계)

  • Kim, Ju Hwan;Kim, Zong Woo;Park, Jae Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.1
    • /
    • pp.95-112
    • /
    • 1999
  • In this research, it is proposed that optimization method is introduced and applied to the design of pipeline system in multi-regional water supply project, which has been constructed to settle the regional unbalance problems of available water resources. For the purpose, interface programs are developed to integrate linear programming model and KYPIPE model which is used for optimization and hydraulic analysis, respectively. The developed program is applied to the pipeline system design of multi-regional water supply project. The optimal diameters from the application of linear programming technique are compared with those from conventional method that is time-consuming and tedious trail and error process. Since the conventional design largely depends upon the experience of designers and the results of general hydraulic analysis, it can not be reasonable and consistent. The application of linear programming technique can make it possible to design pipeline system optimally by using same design factors of general hydraulic models. The model can select commercial discrete pipe diameter as optimal size by using pipe length as decision variables. The developed model is applied to Pohang multi-regional water supply system design with two different objective functions, which are initial construction cost and annual cost including electric cost. As results, it is calculated that the initial construction cost of 1,449,740 thousand won is saved and annual cost of 128,951 thousand won is saved for a year within study year. Also, the optimal site of pump station is selected on 5th pipe, which is located between the diverging junction to Kangdong(2) province and the diverging junction to Cheonbuk province. It is explained that pump cost is less than pipe cost in this application case study due to little pump station scale. In the case of water supply with large pump capacity, it is reasonal that the increase of pipe size is more efficient instead the increase of pump station capacity to save annual cost.

  • PDF