• Title/Summary/Keyword: Design Change Variables

Search Result 485, Processing Time 0.028 seconds

Development of web-based collaborative framework for the simulation of embedded systems

  • Yang, Woong;Lee, Soo-Hong;Jin, Yong Zhu;Hwang, Hyun-Tae
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.4
    • /
    • pp.363-369
    • /
    • 2016
  • Cyber Physical System (CPS) and Internet of Things (IoT) are hot objects of interest as an extension of the embedded system. These interactive products and systems contain Mobile Devices which are most popular and used most frequently. Also these have been widely used from the control of the Nuclear Power Control System (NPCS) to IoT Home Service. Information & Communication Technology (ICT) topics of trend fused-complex current Information Technology (IT) and Communication Technology (CT) are closely linked to real space and virtual space. This immediately means the arrival of the ultra-connected society. It refers to a society in which various objects surrounding the human innovation and change in the social sector are expected through the connection between the data which are to be generated. In addition, studies of Tool-kit for the design of such systems are also actively pursued. However, only increased cooperation and information sharing between the physical object consists of a variety of machinery and equipment. We have taken into consideration a number of design variables of the high barriers to entry about the product. In this study, It has been developed a Web-based collaboration framework which can be a flexible connection between macroscopically virtual environment and the physical environment. This framework is able to verifiy and manage physical environments. Also it can resolve the bottlenecks encountered during the base expansion and development process of IoT (Internet of Things) environment.

A Study on Ejector Performance Characteristics by Ejector Geometry/Performance Variables (이젝터 형상/성능 변수에 따른 이젝터 성능 특성에 관한 연구)

  • Choi, Ji-Seon;Yu, I-Sang;Shin, Dong-Hae;Lee, Hee-Jun;Ko, Young-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.6
    • /
    • pp.496-502
    • /
    • 2018
  • In this study, experimental and analytical studies were carried out to observe the phenomenon of aerodynamic throat formed according to the primary flow and secondary flow momentum of the ejector. The equilibrium interval of the aerodynamic throat, which is the main variable of the ejector performance, was observed through the experiment using the cold flow experiment and the analysis using FLUENT. Performance characteristics were investigated by the change of the primary flow rate and the throat diameter of the ejector cylinder. As a result, the performance of the standard ejector was confirmed to be within the range of 0.33~1.167(off-design/design) and cylinder throat diameter range of 1~1.17(off-design/design area ratio).

Optimal Muffler Design Considering the Insertion Loss Calculated Outside the Duct (덕트 밖에서 계산된 삽입 손실을 고려한 머플러 최적 설계)

  • Lee, Jong Kyeom;Oh, Kee Seung;Lee, Jin Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.5
    • /
    • pp.497-503
    • /
    • 2016
  • In this study, we formulate an acoustical topology optimization problem to optimally design a partition layout inside the expansion chamber of a muffler. The lower-limit insertion loss value at a target frequency is constrained, and the partition volume is selected as an object function. In this study, we calculate the insertion loss outside the duct, while to determine the noise-attenuation performance, we use the insertion loss value calculated inside the duct or transmission loss value obtained in a previous study. We employ the finite-element model for acoustical analysis, and we determine the transmission of an incident acoustic wave through each finite element using the functions of design variables that change continuously between "0" and "1." The rigid body elements, which totally reflect incident waves, build up partitions. Finally, we compare optimal topologies that depend on the target frequency and the allowed lower-limit value of insertion loss.

Prediction Models for the Severity of Traffic Accidents on Expressway On- and Off-Ramps (유입·유출특성을 고려한 고속도로 연결로의 교통사고 심각도 예측모형)

  • Yun, Il-Soo;Park, Sung-Ho;Yoon, Jung-Eun;Choi, Jin-Hyung;Han, Eum
    • International Journal of Highway Engineering
    • /
    • v.14 no.5
    • /
    • pp.101-111
    • /
    • 2012
  • PURPOSES: Because expressway ramps are very complex segments where diverse roadway design elements dynamically change within relatively short length, drivers on ramps are required to drive their cars carefully for safety. Especially, ramps on expressways are designed to guarantee driving at high speed so that the risk and severity of traffic accidents on expressway ramps may be higher and more deadly than other facilities on expressways. Safe deceleration maneuvers are required on off-ramps, whereas safe acceleration maneuvers are necessary on onramps. This difference in required maneuvers may contribute to dissimilar patterns and severity of traffic accidents by ramp types. Therefore, this study was aimed at developing prediction models of the severity of traffic accidents on expressway on- and off-ramps separately in order to consider dissimilar patterns and severity of traffic accidents according to types of ramps. METHODS: Four-year-long traffic accident data between 2007 and 2010 were utilized to distinguish contributing design elements in conjunction with AADT and ramp length. The prediction models were built using the negative binomial regression model consisting of the severity of traffic accident as a dependent variable and contributing design elements as in independent variables. RESULTS: The developed regression models were evaluated using the traffic accident data of the ramps which was not used in building the models by comparing actual and estimated severity of traffic accidents. Conclusively, the average prediction error rates of on-ramps and offramps were 30.5% and 30.8% respectively. CONCLUSIONS: The prediction models for the severity of traffic accidents on expressway on- and off-ramps will be useful in enhancing the safety on expressway ramps as well as developing design guidelines for expressway ramps.

Multiple Regression Analysis for Piercing Punch Profile Optimization to Prevent Tearing During Tee Pipe Burring (다중 회귀 분석을 활용한 Tee-Pipe 버링 공정에서 찢어짐 방지를 위한 피어싱 펀치 형상 최적 설계)

  • Lee, Y.S.;Kim, J.Y.;Kang, J.S.;Hong, S.
    • Transactions of Materials Processing
    • /
    • v.26 no.5
    • /
    • pp.271-276
    • /
    • 2017
  • A tee is the most common pipefitting used to combine or divide fluid flow. Tees can connect pipes of different diameters or change the direction of a pipe run. To manufacture tee type of stainless steel pipe, combinations of punch piercing and burr forming have been widely used in the industry. However, such method is considerably time consuming with regard to performing empirical work necessary to attain process conditions to prevent upper end tearing of the tee product and meet target tee height. Numerous experiments have shown that the piercing profile is the main cause of defects mentioned above. Furthermore, the mold design is formed through trial and error according to pipe diameters and changes in requirements. Thus, the objective of this study was to perform piercing and burring process analysis via finite element analysis using DYNAFORM to resolve problems mentioned above. An optimization design method was used to determine the piercing punch profile. Three radii of the piercing punch (i.e., large, small, and joined radii) were selected as design variables to minimize thinning of a tee pipe. Based on results of correlation and multiple regression analyses, we developed a predictive approximation model to satisfy requirements for both thickness reduction and target height. The new piercing punch profile was then applied to actual tee forming using the developed prediction equation. Model results were found to be in good agreement with experimental results.

Optimal dimension design of a hatch cover for lightening a bulk carrier

  • Um, Tae-Sub;Roh, Myung-Il
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.2
    • /
    • pp.270-287
    • /
    • 2015
  • According to the increase of the operating cost and material cost of a ship due to the change of international oil price, a demand for the lightening of the ship weight is being made from various parties such as shipping companies, ship owners, and shipyards. To satisfy such demand, many studies for a light ship are being made. As one of them, an optimal design method of an existing hull structure, that is, a method for lightening the ship weight based on the optimization technique was proposed in this study. For this, we selected a hatch cover of a bulk carrier as an optimization target and formulated an optimization problem in order to determine optimal principal dimensions of the hatch cover for lightening the bulk carrier. Some dimensions representing the shape of the hatch cover were selected as design variables and some design considerations related to the maximum stress, maximum deflection, and geometry of the hatch cover were selected as constraints. In addition, the minimization of the weight of the hatch cover was selected as an objective function. To solve this optimization problem, we developed an optimization program based on the Sequential Quadratic Programming (SQP) using C++ programming language. To evaluate the applicability of the developed program, it was applied to a problem for finding optimal principal dimensions of the hatch cover of a deadweight 180,000 ton bulk carrier. The result shows that the developed program can decrease the hatch cover's weight by about 8.5%. Thus, this study will be able to contribute to make energy saving and environment-friendly ship in shipyard.

The Optimum Design of Impact Absorbing System for Spreader in System Variations (스프레더용 충격흡수기의 시스템 변화에 따른 최적설계)

  • Hong, Do-Kwan;Kim, Dong-Young;Han, Dong-Seop;Ahn, Chan-Woo;Han, Geun-Jo
    • Journal of Navigation and Port Research
    • /
    • v.26 no.3
    • /
    • pp.311-316
    • /
    • 2002
  • On this study, to develop the impact absorbing system for spreader, we operated the dynamic response for models of three types consisting of spring and oil damper by the finite element analysis. Also, in the three types of impact absorbing system, we set the restricted stroke of piston to the static variables and the optimum design was operated to have the minimum value of the reaction force for the impact. As the result, the direct model of two degree of freedom system has lowest value, the model of one degree of freedom system has higher value than that and the parallel model of two degree of freedom system has the highest value. And we studied the effect that the change of spring constant and damping coefficient affect to the reaction force and as the result of the optimum design, we found that reaction force has the lowest value in the each of models.

Design of a Micro-perforated Panel Absorber at High Incident Sound Pressure (높은 입사 음압에서의 미세 천공판을 이용한 흡음 기구의 설계)

  • Park, Soon-Hong;Seo, Sang-Hyun;Jang, Young-Soon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.10
    • /
    • pp.983-990
    • /
    • 2010
  • Reduction of acoustic loads of space launch vehicles can be achieved by acoustic absorbers satisfying strict cleanness requirements. This limited the use of general porous materials and requires non-porous sound absorbers. Micro-perforated panel absorbers(MPPA) is one of promising sound absorbers satisfying the cleanness requirement for launch vehicles. However, its applicability was limited to low sound pressure levels according to the acoustic impedance model of micro-perforated panels. In this paper the applicability of micro-perforated panel absorbers at high incident sound pressure was investigated in experimental ways. The absorption characteristics of a micro-perforated panel absorber was simulated according to its design variables, e.g., minute hole diameters and aperture ratios. It was shown that optimal design can be readily done by using proposed design charts. Experiments were conducted to measure acoustic properties of the designed micro-perforated panel absorbers. The results showed that acoustic resistance increases rapidly as incident sound pressure level does but change of acoustic reactance can be neglected in a practical point of view. This caused the decrease of peak value of absorption coefficient at high incident sound pressure level, but the amount of reduction can be accepted in practice. The major advantage of the micro-perforated panel absorber(wide absorption bandwidth) was still kept at high sound pressure level.

Optimal design of a lightweight composite sandwich plate used for airplane containers

  • Al-Fatlawi, Alaa;Jarmai, Karoly;Kovacs, Gyorgy
    • Structural Engineering and Mechanics
    • /
    • v.78 no.5
    • /
    • pp.611-622
    • /
    • 2021
  • Composite material-due to low density-causes weight savings, which results in lower fuel consumption of transport vehicles. The aim of the research was to change the existing base-plate of the aluminum airplane container with the composite sandwich plate in order to reduce the weight of the containers of cargo aircrafts. The newly constructed sandwich plate consists of aluminum honeycomb core and composite face-sheets. The face-sheets consist of glass or carbon or hybrid fiber layers. The orientations of the fibers in the face-sheets were 0°, 90° and ±45°. Multi-objective optimization method was elaborated for the newly constructed sandwich plates. Based on the design aim, the importance of the objective functions (weight and cost of sandwich plates) was the same (50%). During the optimization nine design constraints were considered: stiffness, deflection, facing stress, core shear stress, skin stress, plate buckling, shear crimping, skin wrinkling, intracell buckling. The design variables were core thickness and number of layers of the face-sheets. During the optimization both the Weighted Normalized Method of the Excel Solver and the Genetic Algorithm Solver of Matlab software were applied. The mechanical properties of composite face-sheets were calculated by Laminator software according to the Classical Lamination Plate Theory and Tsai-Hill failure criteria. The main added-value of the study is that the multi-objective optimization method was elaborated for the newly constructed sandwich structures. It was confirmed that the optimal new composite sandwich construction-due to weight savings and lower fuel consumption of cargo aircrafts - is more advantageous than conventional all-aluminum container.

Study on Optimal Design of Traverse Switch System for Maglev Train (자기부상열차용 트레버스 분기기 최적설계 연구)

  • Lee, Younghak;Kim, Chang-Hyun;Lee, Jong-Min
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.6
    • /
    • pp.717-726
    • /
    • 2016
  • Emergency tracks are necessary in case a broken down train evacuates, a train needs to make way for a faster train behind it, or a train suddenly stops and following trains must avoid colliding with it. Magnetic Levitated (maglev) Trains can change track to enter an emergency track using a segmented switch or a traverse switch. On a traverse switch, a train can change its track when the part of the track that the train is on moves to the other track. Currently manufactured Maglev trains have two bodies and the total length is 25 meters. If a traverse switch is used, it will only require 30 meters of track to move the train to the other track, so, when it comes to efficiency of costs and space, the traverse switch surpasses the articulated switch. Therefore, in this paper, an optimized design to secure structural safety and weight lightening is suggested. To achieve these results, the heights of the piled concrete and girders which are both placed on the top of the traverse switch, are set as design variables. The Finite Element Method (FEM), in application of kriging and in the design of the experiments (DOE), is used. Maximum stress, deformation, and structural weight are compared with the results, and through this process structural safety and weight lightening is proven.