• Title/Summary/Keyword: Desiccant rotor

Search Result 25, Processing Time 0.019 seconds

A Study on the Performance Evaluation of a Hybrid Desiccant Cooling System (하이브리드 제습냉방시스템의 성능평가 연구)

  • Hwang, Won-Baek;Kim, Young-Chan;Lee, Dae-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.2
    • /
    • pp.121-128
    • /
    • 2012
  • Improvement in the energy efficiency has been studied of the desiccant cooling system by applying a vapor compression type heat pump to modify the system into a hybrid system. The cycle simulation was performed and the results were compared between a reference desiccant cooling system composed of a desiccant rotor, a sensible rotor and a regenerative evaporative cooler, and a hybrid desiccant cooling system with the sensible rotor being replaced by a heat pump. Though the electric consumption increases as much as the compressor power consumption, the total cooling capacity increases and the thermal energy input decreases by the addition of the heat pump. Therefore, the total energy efficiency can be improved if the increase in the electric consumption can be compensated with the increase in the cooling capacity and the decrease in the thermal energy input. The results showed that the total energy efficiency is optimized at a certain heat pump capacity. When the heat from the CHP plant is used for the thermal energy input, the energy consumption of the hybrid system is reduced by 20~30% compared with the reference system when the heat pump shares 30~40% of the total cooling capacity.

Desiccant Dehumidifier Selection Program (데시칸트제습기 선정프로그램)

  • Kim, Hue-Jae;Park, Seung-Tae;You, Kyoung-Rok;Lee, Hyun-Ju
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.224-229
    • /
    • 2009
  • Performance curve of the desiccant rotor is an important information when developing and selecting the desiccant dehumidifier. The effective utilization of the energy is major capacity for the system and the desiccant performance curve is a design ability for a designer. By the rotor supply contract with DRI, ECO-DRY programs would be offered. Moreover, it could make remarkable progress in the desiccant system and energy saving. It is good to introduce the programs with the amicable help of DRI.

  • PDF

Derivation and Analysis of Dimensionless Parameters Dominating the Dehumidification Characteristics of a Desiccant Rotor (제습로터의 운전특성을 재배하는 무차원 인자의 도출과 해석)

  • Lee Gilbong;Kim Min Soo;Lee Dae-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.7
    • /
    • pp.611-619
    • /
    • 2005
  • In a previous work of the authors, the heat and mass transfer in a desiccant rotor was analyzed theoretically through linearization assumptions and four dimensionless parameter groups dominating the dehumidification process were arranged. In this work is verified whether the four dimensionless parameters also play the dominant roles in more realistic situations where the nonlinear factors affect the heat and mass transfer. The results show that the dehumidification characteristics are closely similar to each other as long as the four dimensionless parameters have the same set of values while the rotor configurations and/or the operation conditions are different from each other. The four dimensionless parameters are $\Psi,\;\chi,\;\sigma$ and N, where $\Psi$ implies the average gradient of relative humidity lines in the psychrometric chart, $\chi$ the heat capacity of the rotor and $\sigma$ the sorption capacity of the rotor, and N implies the number of transfer unit.

Effects of Performance Analysis of a Desiccant Cooling System with a Direct Evaporative Cooler in the Inlet of Regeneration Process (재생입구 직접증발냉각기 적용이 제습냉방시스템 성능에 미치는 영향)

  • Dash, Ulziiutas;Sung, Sang-Chul;Oh, Myung-Do;Lee, Dae-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.5
    • /
    • pp.328-335
    • /
    • 2010
  • The purpose of this study is to make an analysis of influence on the cooling capacity and COP of a desiccant cooling system with a regenerative evaporative cooler when a direct evaporative cooler was applied to the inlet of regeneration process of this system. We used cycle simulation in order to analyze the performance of this system. From the cycle simulation, we knew that the optimal rotation time of desiccant rotor was between 160s and 220s and hardly ever affected cooling capacity of desiccant cooling system when this system was operated at the outdoor air condition of $35^{\circ}$ and 40% RH and low regeneration temperature of $60^{\circ}$. Also there was optimal area ratio of regeneration to dehumidification between 0.7 and 1.0. Our results showed that it had a small effect on the system’s cooling capacity to install direct evaporative cooler at the inlet of regeneration process.

Heat and Mass Transfer in Hygroscopic Rotor During Adsorption and Desorption Process (흡착과 탈착 과정 동안 제습 로터의 열/물질 전달)

  • Shin, Hyun-Geun;Park, Il Seouk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.11
    • /
    • pp.977-984
    • /
    • 2013
  • A hygroscopic rotor comprises many microchannels with high adsorption characteristics. In this study, the iterative adsorption/desorption processes that were affected by the humid air flow in a channel were numerically simulated. In consideration of the accuracy and computational costs, in the desiccant layer, only surface diffusion was considered in this simulation. The results were compared with the previous numerical results and found to show good agreement. By conjugating the heat and mass transfer between the desiccant and the flow layers, temporal and spatial changes in the vapor mass fraction, adsorbed liquid water mass fraction, and temperature in the channel were presented.

Effects of performance analysis of a desiccant cooling system with a direct evaporative cooler in the regeneration process (재생 입구 직접증발냉각기 적용이 제습냉방시스템 성능에 미치는 영향)

  • Dash, Ulziiutas;Oh, Myung-Do
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.633-638
    • /
    • 2009
  • In this study the performance analysis and cooling capacity of desiccant cooling system incorporating regenerative cooler and direct evaporative cooler in the regeneration air inlet were investigated on the condition of low regeneration temperature and time rotation 180s and area ratio of regeneration to dehumidification section 0.7. The cooling capacity and COP are evaluated at various effectiveness values of the direct evaporative cooler or the regenerative evaporative cooler. As either of effectiveness of the regenerative and direct evaporative coolers of desiccant cooling system increases, both the cooling capacity and COP increase, but effectiveness value of regenerative cooler gives the opposite effect on the system performance. It is found that effectiveness of regenerative cooler less than 0.7 shows the optimum cooling capacity.

  • PDF

Performance Analysis of a Hybrid Desiccant Cooling System for Residential Air Conditioning in the Seoul Region under the Climate Scenarios SSP5 and SSP1 (기후 시나리오 SSP5와 SSP1에서의 2100년 서울 지역에서의 여름철 주택 냉방을 위한 하이브리드 제습 냉방 시스템 성능 분석)

  • YULHO LEE;SUNGJIN PARK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.6
    • /
    • pp.773-784
    • /
    • 2023
  • In this study, a comparative analysis between an electric heat pump cooling system and a hybrid desiccant cooling system is conducted. Desiccant cooling is a thermal driven system with potentially lower electric power consumption than electric heat pump. Hybrid desiccant cooling system simulation includes components such as a desiccant rotor, direct and indirect evaporative coolers, heat exchangers, fans, and a heat pump system. Using dynamic simulations by climate conditions, house cooling temperatures and power consumption for both systems are analyzed for 16 days period in the summer season under climate scenarios for the year 2100 prediction. The results reveal that the hybrid desiccant cooling system exhibits a 5-18% reduction in electric consumption compared to the heat pump system.

Small-Capacity Solar Cooling System by Desiccant Cooling Technology (태양열 이용 소용량 제습냉방시스템)

  • Lee, Dae-Young;Kwon, Chi-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.154-156
    • /
    • 2008
  • A prototype of the desiccant cooling system with a regenerative evaporative cooler was built and tested for the performance evaluation. The regenerative evaporative cooler is to cool a stream of air using evaporative cooling effect without an inc6rease in the humidity ratio. It is comprised of multiple pairs of dry and wet channels and the evaporation water is supplied only to the wet channels. By redirecting a portion of the air flown out of the dry channel into the wet channel, the air can be cooled down to a temperature lower than its inlet wet-bulb temperature at the outlet end of the dry channels. Incorporating a regenerative evaporative cooler eliminates the need for deep dehumidification in the desiccant rotor that is necessary to achieve low air temperature in the system with a direct evaporative cooler. Subsequently, the regenerative evaporative cooler enables the use of low temperature heat source to regenerate the dehumidifier permitting the desiccant cooling system more beneficial compared with other thermal driven air conditioners. At the ARI condition with the regeneration temperature of $60^{\circ}C$, the prototype showed the cooling capacity of 4.4 kW and COP of 0.75.

  • PDF

Performance Characteristics of the Desiccant Cooling System in Various Outdoor and Load Conditions (외기조건에 따른 제습냉방시스템의 성능 특성)

  • Lee, Dae-Young;Chang, Young-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.623-628
    • /
    • 2009
  • Desiccant based air conditioning system offers a promising alternative to conventional one using vapour compression refrigeration for energy saving and greenhouse gas reduction. It is a heat driven cycle which has high potential for the use of low grade heat source such as the waste heat from the cogeneration plant or the solar thermal energy. In this study, the cooling performance of a desiccant cooling system incorporating a regenerative evaporative cooler was characterized in various operation conditions through numerical simulation. The cooling capacity and COP were evaluated at various outdoor conditions, regeneration temperatures, and supply flow rates. Based on the performance characteristics, the optimal control scheme was discussed to minimize the cooling cost at part load condition.

  • PDF