DOI QR코드

DOI QR Code

Heat and Mass Transfer in Hygroscopic Rotor During Adsorption and Desorption Process

흡착과 탈착 과정 동안 제습 로터의 열/물질 전달

  • Shin, Hyun-Geun (School of Mechanical Engineering, Kyungpook Nat'l Univ.) ;
  • Park, Il Seouk (School of Mechanical Engineering, Kyungpook Nat'l Univ.)
  • 신현근 (경북대학교 기계공학부) ;
  • 박일석 (경북대학교 기계공학부)
  • Received : 2013.05.01
  • Accepted : 2013.07.22
  • Published : 2013.11.01

Abstract

A hygroscopic rotor comprises many microchannels with high adsorption characteristics. In this study, the iterative adsorption/desorption processes that were affected by the humid air flow in a channel were numerically simulated. In consideration of the accuracy and computational costs, in the desiccant layer, only surface diffusion was considered in this simulation. The results were compared with the previous numerical results and found to show good agreement. By conjugating the heat and mass transfer between the desiccant and the flow layers, temporal and spatial changes in the vapor mass fraction, adsorbed liquid water mass fraction, and temperature in the channel were presented.

흡착식 제습기에 적용되는 제습 로터는 높은 제습 성능을 달성키 위해, 흡수율이 높은 재질로 구성된 수많은 미세 채널을 포함하고 있다. 본 연구에서는 습공기 흐름에 의해 나타나는 제습 로터 내부의 반복적인 흡착/탈착 과정에 대한 수치해석 결과를 소개한다. 수치해석의 정확도와 효율성을 고려하여 흡습층 내부에서는 표면 확산(surface diffusion)만을 고려하여 해석을 수행하였다. 해석결과는 이전의 연구와 비교하였고, 온도에 대한 비교 오차는 약 2%이하인 점을 감안하여 해석결과가 매우 잘 일치하는 것을 확인하였다. 단일 채널 내부에서 유동층 (flow layer)과 흡습층 (desiccant layer) 간 열/물질전달 연계 해석을 통하여 채널 내부의 수증기 분율, 흡수된 물 분율과 온도 등에 대한 시간 및 공간적 변화를 나타내었다.

Keywords

References

  1. Sherony, D. F. and Solbrig, C. W., 1970, "Analytical Investigation of Heat or Mass Transfer and Friction Factors in a Corrugated Duct Heat or Mass Exchanger," International Journal of Heat and Mass Transfer, Vol. 13, No. 1, pp. 145-159. https://doi.org/10.1016/0017-9310(70)90031-1
  2. Simonson, C. J. and Besant, R. W., 1997, "Heat and Moisture Transfer in Desiccant Coated Rotary Energy Exchangers: Part I. Numerical Model," HVAC&R Research, Vol. 3, No. 4, pp. 325-350. https://doi.org/10.1080/10789669.1997.10391381
  3. Simonson, C. J. and Besant, R. W., 1999, "Energy Wheel Effectiveness: Part I-Development of Dimensionless Groups," International Journal of Heat and Mass Transfer, Vol. 42, No. 12, pp. 2161-2170. https://doi.org/10.1016/S0017-9310(98)00325-1
  4. Zhang, X. J., Dai, Y. J. and Wang, R. Z., 2003, "A Simulation Study of Heat and Mass Transfer in a Honeycombed Rotary Desiccant Dehumidifier," Applied Thermal Engineering, Vol. 23, No. 8, pp. 989-1003. https://doi.org/10.1016/S1359-4311(03)00047-4
  5. Majumdar, P., 1998, "Heat and Mass Transfer in Composite Desiccant Pore Structures for Dehumidification," Solar Energy, Vol. 62, No. 1, pp. 1-10. https://doi.org/10.1016/S0038-092X(97)00080-7
  6. Ruivo, C. R., Costa, J. J. and Figueiredo, A. R., 2007, "On the Behavior of Hygroscopic Wheels: PartI - Channel Modelling," International Journal of Heat and Mass Transfer, Vol. 50, No. 23-24, pp. 4812-4822. https://doi.org/10.1016/j.ijheatmasstransfer.2007.03.003
  7. Ruivo, C. R., Costa, J. J. and Figueiredo, A. R., 2006, "Analysis of Simplifying Assumptions for the Numerical Modeling of the Heat and Mass Transfer in a Porous Desiccant Medium," Numerical Heat Transfer, Part A, Vol. 49, No. 9, pp. 851-872. https://doi.org/10.1080/10407780500483552
  8. Pesaran, A. A. and Mills, A. F., 1987, "Moisture Transport in Silica Gel Packed Beds-I. Theoretical Study," International Journal of Heat and Mass Transfer, Vol. 30, No. 6, pp. 1037-1049. https://doi.org/10.1016/0017-9310(87)90034-2