• 제목/요약/키워드: Desiccant Air Dryer

검색결과 10건 처리시간 0.033초

하이브리드 냉풍건조기 개발 (Development of the hybrid desiccant cooling dryer)

  • 최현웅;정광섭;이태호;박승태
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.236-241
    • /
    • 2009
  • After analyzing the characteristics of the cooling dryer, the mixed cooling dryer was developed by adding the desiccant dryer which supplement the cooling dryer's demerits. Also, the hybrid desiccant cooling dryer was developed to use effectively the exhaust heat energy of the cooling dryer. It could make a more that 20 percent reduction in energy compared with the mixed desiccant cooling dryer. It has become essential to supply this equipment and search the suitable drying product.

  • PDF

복합형 냉풍건조기 실험에 대한 검토 (Study in the Mixed Cooling Dryer Experiment)

  • 최진영;김세환;박승태;이정호
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.254-259
    • /
    • 2009
  • The mixed cooling dryer has been developed significantly by adopting both advantages of cooling dryers and desiccant dryers. In this study, it is introduced that the desired effect, such as drying rate period reduction and energy-saving, could be achieved only by adding the desiccant dryer if an existing cooling dryer is used. The experiment should be conducted for quite long time due to the material selection, so it is regrettable that there are not enough data.

  • PDF

고순도 압축공기 제조시스템의 흡착식 Dryer에서 에너지절감을 위한 운전방법에 관한 연구 (A Study on Operating Method to Save Energy from the Adsorption Dryer in the Process of Purifying Compressed Air)

  • 강석완;장성호;김현준;김성수;이영욱
    • 산업경영시스템학회지
    • /
    • 제39권3호
    • /
    • pp.180-191
    • /
    • 2016
  • Optimizing energy usage for maximum efficiency is an essential goal for manufacturing plants in every industrial manufacturing sector. The generation and distribution of purifying compressed air is a large expense incurred in practically all manufacturing processes. Not only is the generation and treatment expensive equipment of compressed air, but frequent maintenance and effective operation is also required. As a plant's compressed air system is often an integral part of the production process, it needs to be reliable, efficient, and easy to be maintain. In this paper, we study to find operating method to save energy from the adsorption dryer in the process of purifying compressed air, which is required for a clean room production site in "A" company. The compressed air passes through a pressure vessel with two "towers" filled with a material such as activated alumina, silica gel, molecular sieve or other desiccant material. This desiccant material attracts the water from the compressed air via adsorption. As the water clings to the desiccant, the desiccant particle becomes saturated. Therefore, Adsorption dryer is an extremely significant facility which removes the moisture in the air $70^{\circ}C$ below the dew point temperature while using a lot of energy. Also, the energy consumption of the adsorption dryer can be varied by various operating conditions (time, pressure, temperature, etc). Therefore, based on existing operating experiments, we have searched operating condition to maximize energy saving by changing operating conditions of the facility. However, due to a short experiment period (from September to October), further research will be focused on considering seasonality.

신냉매용 자동차 에어콘 시스템에서의 건조기 설계에 관한 연구(온도감응식 팽창밸브의 개도에 따른) (Optimum Design Scheme of Receiver Dryer in an Automotive Air-Conditioning System using HFC-134a Refrigerant)

  • 송유호;김령훈;송영길
    • 한국자동차공학회논문집
    • /
    • 제4권6호
    • /
    • pp.187-195
    • /
    • 1996
  • Because an alternative refrigerant(HFC-134a) is being used instead of CFC-12 for automotive air-conditioning system, newly designed air-conditioning components are necessary due to changes in characteristics. Optimum design scheme for receiver dryer in an automotive air-conditioning system is described with emphases upon the volume of desiccant and container. The volume of the container, that is manufactured based on the study, is reduced down to one half of the existing receiver dryers.

  • PDF

복합 냉풍 건조기 개발 (Development of the mixed desiccant cooling dryer)

  • 최현웅;김영일;박승태;유경록
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.242-247
    • /
    • 2009
  • The present study has been conducted to reduce the cold air drying rate. According to the cold air drying method, the quality-excellent product could be made and there would be little change of color, taste and smell. As compared with the hot air drying, the cold air drying equipment has the superior dehumidification in a constant drying zone. However, in a falling drying zone that equipment is not energy-efficient because the drying period could be longer by the dehumidificated.

  • PDF

저온진공건조 공정에 제습제 적용을 위한 타당성 연구 (Feasibility Study for Applying Desiccant to Low Temperature Vacuum Drying Process)

  • 심연호;강지수;변시예;장영수;강병하
    • 설비공학논문집
    • /
    • 제28권5호
    • /
    • pp.208-215
    • /
    • 2016
  • This study was conducted to improve the performance of low-temperature vacuum dryer by applying desiccant to cold trap. Performance evaluation was carried out using several desiccants. The amounts of absorption and diffusivity were measured based on analytic model. Results of desiccant performance evaluation revealed that silica-gel had the most excellent performance for conditions of low-temperature vacuum drying process. Silica-gel was applied to cold trap for evaluating the drying performance. The experiment results showed that the drying time was extended as the thickness of sample was increased due to increased heat and mass transfer resistance of drying sample. In addition, as heating plate temperature was increased, drying time was decreased due to increased evaporation pressure of drying sample. Furthermore, drying time with desiccant was decreased approximately 20% than that without desiccant.

에어 드라이어 제습성능 최적화 프로그램 개발 (A Study on Optimizing Drying Performance of Air Dryer)

  • 박원기;이희관;양균의;문상돈
    • 한국자동차공학회논문집
    • /
    • 제18권6호
    • /
    • pp.70-75
    • /
    • 2010
  • Compressed air represents an energy source and an force-transmission medium for brake systems on medium-heavy and heavy-duty commercial vehicles. However, one disadvantage is the tendency of air to absorb moisture in the form of water vapor. This water vapor condenses once the air, which is heated during compression, cools back to ambient temperature upon emerging from the air compressor. The resulting condensation assumes the form of moisture in pneumatic lines, air tanks, cylinders and valve assemblies and can have negative consequences for the brake system and vehicle safety. The pneumatic systems on today's vehicles are equipped with air dryers, in which the supplied air is dried according to the adsorption principle. In the systems, the compressed air flows through a granular desiccant with molecular sieves which captures the water molecules.

자동차 냉방시스템에서 건조기 일체형 응축기 개발 (Development on the Sub-Cooled Hybrid Condenser in Automotive Air-Conditioning System)

  • 김경훈;장주섭;박종일
    • 한국자동차공학회논문집
    • /
    • 제11권5호
    • /
    • pp.70-76
    • /
    • 2003
  • An experimental study was performed to understand the heat transfer and fluid dynamic characteristics of Sub-Cooled Hybrid Condenser (SCHC), which conventional condenser and receiver dryer are integrated into. SCHC also employs a sub-cooled refrigerant passages at the end of the condenser in order to supply perfect liquid refrigerant to the expansion unit. Throughout the present study, it was found that the developed SCHC increases in the degree of sub-cooling by 10~100% compared to conventional condenser. The excessive sub-cooling has improved the cooling performance by 10%, and that leads reduction in evaporator outlet air temperature by $1.5^{\circ}C$. Also found through the study is that the refrigerant pressure drop across SCHC is fairly increased due to insertion of the desiccant cartridge in the receiver tank which is composed of zeolite, filter and supporter plate.

압축냉각공기를 이용한 선삭가공시 냉각효과 해석 (Analysis of Cooling Effect Using Compressed Cold Air in Turing Process)

  • 곽승용;김동길;이종항;이상조
    • 대한기계학회논문집A
    • /
    • 제27권6호
    • /
    • pp.1007-1013
    • /
    • 2003
  • As environmental restriction kas continuously become more strict, machining technology has emphasized on development of environment-friendly technology. In cutting technology, it has been well recognized that cutting fluids might have undesirable effects on workers health and working environment. In this study, compressed cold air was used as a replacement for conventional cutting fluids. The cooling effect on cutting tool was analyzed using the finite element method and the computational fluid dynamics. This study focused on the temperature simulation of cutting tool by real flow analysis of cold air. The maximum flow rate and the minimum temperature of compressed cold air are 300ι/min and -30$^{\circ}C$ respectively. To compare the simulation and experimental results, inner temperature of the cutting tool was measured with the thermocouple embedded in the insert. The results show that the analysis of cutting temperature using FEM and CFD is resonable, and the replacement of cutting fluid with cold air is available.

설비공학 분야의 최근 연구 동향 : 2013년 학회지 논문에 대한 종합적 고찰 (Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2013)

  • 이대영;김사량;김현정;김동선;박준석;임병찬
    • 설비공학논문집
    • /
    • 제26권12호
    • /
    • pp.605-619
    • /
    • 2014
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2013. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and relative parts including orifices, dampers and ducts, fuel cells and power plants, cooling and air-conditioning, heat and mass transfer, two phase flow, and the flow around buildings and structures. Research issues dealing with home appliances, flows around buildings, nuclear power plant, and manufacturing processes are newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for general analytical model for desiccant wheels, the effects of water absorption on the thermal conductivity of insulation materials, thermal properties of Octadecane/xGnP shape-stabilized phase change materials and $CO_2$ and $CO_2$-Hydrate mixture, effect of ground source heat pump system, the heat flux meter location for the performance test of a refrigerator vacuum insulation panel, a parallel flow evaporator for a heat pump dryer, the condensation risk assessment of vacuum multi-layer glass and triple glass, optimization of a forced convection type PCM refrigeration module, surface temperature sensor using fluorescent nanoporous thin film. In the area of pool boiling and condensing heat transfer, researches on ammonia inside horizontal smooth small tube, R1234yf on various enhanced surfaces, HFC32/HFC152a on a plain surface, spray cooling up to critical heat flux on a low-fin enhanced surface were actively carried out. In the area of industrial heat exchangers, researches on a fin tube type adsorber, the mass-transfer kinetics of a fin-tube-type adsorption bed, fin-and-tube heat exchangers having sine wave fins and oval tubes, louvered fin heat exchanger were performed. (3) In the field of refrigeration, studies are categorized into three groups namely refrigeration cycle, refrigerant and modeling and control. In the category of refrigeration cycle, studies were focused on the enhancement or optimization of experimental or commercial systems including a R410a VRF(Various Refrigerant Flow) heat pump, a R134a 2-stage screw heat pump and a R134a double-heat source automotive air-conditioner system. In the category of refrigerant, studies were carried out for the application of alternative refrigerants or refrigeration technologies including $CO_2$ water heaters, a R1234yf automotive air-conditioner, a R436b water cooler and a thermoelectric refrigerator. In the category of modeling and control, theoretical and experimental studies were carried out to predict the performance of various thermal and control systems including the long-term energy analysis of a geo-thermal heat pump system coupled to cast-in-place energy piles, the dynamic simulation of a water heater-coupled hybrid heat pump and the numerical simulation of an integral optimum regulating controller for a system heat pump. (4) In building mechanical system research fields, twenty one studies were conducted to achieve effective design of the mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, and renewable energies in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment is mostly focused on indoor environment and building energy. The main researches of indoor environment are related to infiltration, ventilation, leak flow and airtightness performance in residential building. The subjects of building energy are worked on energy saving, operation method and optimum operation of building energy systems. The remained studies are related to the special facility such as cleanroom, internet data center and biosafety laboratory. water supply and drain system, defining standard input variables of BIM (Building Information Modeling) for facility management system, estimating capability and providing operation guidelines of subway station as shelter for refuge and evaluation of pollutant emissions from furniture-like products.