• Title/Summary/Keyword: Desertification

Search Result 90, Processing Time 0.033 seconds

Metabolomes and transcriptomes revealed the saponin distribution in root tissues of Panax quinquefolius and Panax notoginseng

  • Wei, Guangfei;Yang, Feng;Wei, Fugang;Zhang, Lianjuan;Gao, Ying;Qian, Jun;Chen, Zhongjian;Jia, Zhengwei;Wang, Yong;Su, He;Dong, Linlin;Xu, Jiang;Chen, Shilin
    • Journal of Ginseng Research
    • /
    • v.44 no.6
    • /
    • pp.757-769
    • /
    • 2020
  • Background: Panax quinquefolius and Panax notoginseng are widely used and well known for their pharmacological effects. As main pharmacological components, saponins have different distribution patterns in the root tissues of Panax plants. Methods: In this study, the representative ginsenosides were detected and quantified by desorption electrospray ionization mass spectrometry and high-performance liquid chromatography analysis to demonstrate saponin distribution in the root tissues of P. quinquefolius and P. notoginseng, and saponin metabolite profiles were analyzed by metabolomes to obtain the biomarkers of different root tissues. Finally, the transcriptome analysis was performed to demonstrate the molecular mechanisms of saponin distribution by gene profiles. Results: There was saponin distribution in the root tissues differed between P. quinquefolius and P. notoginseng. Eight-eight and 24 potential biomarkers were detected by metabolome analysis, and a total of 340 and 122 transcripts involved in saponin synthesis that were positively correlated with the saponin contents (R > 0.6, P < 0.05) in the root tissues of P. quinquefolius and P. notoginseng, respectively. Among them, GDPS1, CYP51, CYP64, and UGT11 were significantly correlated with the contents of Rg1, Re, Rc, Rb2, and Rd in P. quinquefolius. UGT255 was markedly related to the content of R1; CYP74, CYP89, CYP100, CYP103, CYP109, and UGT190 were markedly correlated with the Rd content in P. notoginseng.

Status of research on the sweetpotato biotechnology and prospects of the molecular breeding on marginal lands (고구마 생명공학연구 현황과 조건 불리지역 분자육종 전망)

  • Kim, Ho Soo;Yoon, Ung-Han;Lee, Chan-Ju;Kim, So-Eun;Ji, Chang Yoon;Kwak, Sang-Soo
    • Journal of Plant Biotechnology
    • /
    • v.45 no.3
    • /
    • pp.196-206
    • /
    • 2018
  • Dramatic increase in global population accompanied by rapid industrialization in developing countries has led to serious environmental, food, energy, and health problems. The Food and Agriculture Organization of the United Nations has estimated world population will increase to 9.7 billion by 2050 and require approximately 1.7 times more food, and more than 3.5 times energy than that of today. Particularly, sweetpotato is easy to cultivate in unfavorable conditions such as heat, drought, high salt, and marginal lands. In this respect, sweetpotato is an industrially valuable starch crop. To replace crops associated with these food and energy problems, it is necessary to develop new crops with improved nutrients and productivity, that can be grown on marginal lands, including desertification areas using plant biotechnology. For this purpose, exploring useful genes and developing genetically modified crops are essential strategies. Currently, sweetpotato [Ipomoea batatas (L.) Lam.] have been re-evaluated as the best health food and industrial crop that produces starch and low molecular weight antioxidants, such as vitamin A, vitamin E, anthocyanins and carotenoids. This review will focus on the current status of research on sweetpotato biotechnology on omics including genome sequencing, transcriptome, proteomics and molecular breeding. In addition, prospects on molecular breeding of sweetpotato on marginal lands for sustainable development were described.

Studies on the Desertification and Sand Industry Development(II) - Analysis of Silvicultural Techniques and Effects of Landscape-Eco Shelterbelt Establishment - (사막화방지(沙漠化防止) 및 방사기술개발(防沙技術開發)에 관한 연구(硏究)(II) - 중국(中國)의 경관(景觀)-생태(生態) 방호림조성기술(防護林造成技術) 및 효과분석(效果分析) -)

  • Woo, Bo-Myeong;Lee, Kyung-Joon;Jeon, Gi-Seong;Kim, Kyung-Hoon;Choi, Hyung-Tae;Lee, Seung-Hyun;Lee, Byung-Kwon;Kim, So-Yeon;Lee, Sang-Ho;Jeon, Jeong-Ill
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.3 no.3
    • /
    • pp.81-99
    • /
    • 2000
  • The shelterbelts are very important to conserve and protect the sandy land, vegetation coverage, farmland, livestock and human life in the desertified land. The shelterbelts are constructed by the several row-plantings of high-adaptable species in the desertified land. The shelterbelts have various kind of type, and there are shelterbelts for conservation of farmland in dry the region, the protective shelterbelts (windbreaks for blowing-sand, artificial sanddune fixation by revegetation, and construction of farmland shelterbelts to protect farmland and pasture from wind erosion, etc.) in the semi-dry steppe, shelterbelts around the villages and oasis for sanddune fixation, shelterbelts for protection of railroads, and so on. The shelterbelts consist of main she1terbelts and minor shelterbelts. The main shelterbelts were constructed by being perpendicular to main wind direction, and the minor shelterbelts were constructed by being perpendicular to the main shelterbelts. Generally, the width of shelterbelts is 8~20m, and the number of row-planting is 4~10. The grid sizes of shelterbelts networks are $400{\times}400m$, $300{\times}500m$, $100{\times}200m$, and so on, and there are ventilation type and closing type in the type of shelterbelt. The width, number of row-planting, grid size and type of shelterbelt are selected by the local characteristics. The effects of shelterbelts are mainly the climate improvement and mitigation, such as prevention of occurrence of strong wind, cold wind and blowing-sand. And, the other effects of shelterbelts are effect of reforestation, increase of agricultural productions, establishment of greenbelts and green forests, construction of landscape-eco shelterbelts, improvement of life environment of local villages, supply of fuel wood and agricultural wood, land amelioration, effect of revegetation and restoration of desertified land, and so on. The kinds of the tree species mainly used for the construction of shelterbelts have differences between regions, but main species are Populus euphratica, Populus simonii, Populus bolleana, Populus tomentosa, Salix flavida, Salix mongolica, Tamarix chinensis, Hedysarum scoparium, and so on.

  • PDF

Future Projections of Köppen Climate Shifts in the Asia Regions Using A2 Scenario (A2 시나리오를 이용한 아시아 지역 기후대의 변화 전망)

  • Shin, Sang Hoon;Bae, Deg Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.3
    • /
    • pp.253-265
    • /
    • 2013
  • The objective of this study is to analyse the current climate zone applied by K$\ddot{o}$ppen climate classification and the future climate zone projected by the A2 scenario in Asia regions. The spatial and temporal variations of precipitation and temperature were also analyzed. As regards to the result of analysis on the variation of climate factor, temperature and precipitation will be increasing $4.0^{\circ}C$ and 12% respectively in the 2080s comparing with the reference period (1991~2010). Spatially, the range of temperature increase on the high latitude area is higher than that on the low latitude area. The precipitation will be increasing averagely in the overall area, but the spatial unequal distribution of precipitation will be intensified. At the result of the future climate zone, the area of warm climates will be increasing while the area of cold climates will be decreasing. In 2080s, the temperature will be increasing as much as 7.2% and 1.9% on the Tropical climates and Arid climates respectively, but it will be decreasing as -2.4%, -4.9% and -1.8% on the Warm temperate climates, Cold climates and Polar climates respectively. Furthermore, the part of Savannah climates and Desert climates will be mostly increasing. It is mainly caused by the temperature increase and desertification impact according to global warming.

Effect of Microorganism Mixture Application on the Microflora and the Chemical Properties of Soil and the Growth of Vegetables in Greenhouse (미생물혼합제제 처리가 토양의 미생물상과 화학적 특성 및 시설 채소 생육에 미치는 영향)

  • Ryu, Il-Hwan;Jeong, Su-Ji;Han, Seong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.4
    • /
    • pp.368-374
    • /
    • 2012
  • BACKGROUND: The urgency of feeding the world's growing population while combating soil pollution, salinization and desertification requires suitable biotechnology not only to improve crop productivity but also to improve soil health through interactions of soil nutrient and soil microorganism. Interest in the utilization of microbial fertilizer has increased. A principle of nature farming is to produce abundant and healthy crops without using chemical fertilizer and pesticides, and without interrupting the natural ecosystem. Beneficial microorganisms may provide supplemental nutrients in the soil, promote crop growth, and enhance plant resistance against pathogenic microorganisms. We mixed beneficial microorganisms such as Bacillus sp. Han-5 with anti-fungal activities, Trichoderma harziaum, Trichoderma longibrachiatum with organic material degrading activity, Actinomycetes bovis with antibiotic production and Pseudomonas sp. with nitrogen fixation. This study was carried out to investigate the mixtures on the soil microflora and soil chemical properties and the effect on the growth of lettuce and cucumber under greenhouse conditions. METHODS AND RESULTS: The microbial mixtures were used with each of organic fertilizer, swine manure and organic+swine manure and compared in regard to changes in soil chemical properties, soil microflora properties and crop growth. At 50 days after the treatment of microorganism mixtures, the pH improved from 5.8 to 6.3, and the EC, $NO_3$-Na and K decreased by 52.4%, 60.5% and 29.3%, respectively. The available $P_2O_5$ and $SiO_2$ increased by 25.9% and 21.2%, respectively. Otherwise, the population density of fluorescent Pseudomonas sp. was accelerated and the growth of vegetables increased. Moreover, the population density of E. coli and Fusarium sp., decreased remarkably. The ratio of bacteria to fungi (B/F) and the ratio of Actinomycetes bovis to fungi (A/F) increased 2.3 (from 272.2 to 624.4) and 1.7 times (from 38.3 to 64), respectively. Furthermore, the growth and yield of cucumber and lettuce significantly increased by the treatment of microorganism mixtures. CONCLUSION(S): These results suggest that the treatment of microorganism mixtures improved the chemical properties and the microflora of soil and the crop growth. Therefore, it is concluded that the microorganism mixtures could be good alternative soil amendments to restore soil nutrients and soil microflora.

Location Suitability Assessment on Marine Afforestation Using Habitat Evaluation Procedure(HEP) and 3D kriging: A Case Study on Jeju, Korea (서식지 평가법(HEP)과 3D 공간보간법(Kriging)을 이용한 제주도 바다숲 입지적합성 평가)

  • Lee, Jinhyung;Kim, Youngho
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.17 no.4
    • /
    • pp.771-785
    • /
    • 2014
  • As marine desertification and chlorosis in Korean coast have been intensified over time, Korean government is promoting marine afforestation projects. However, marine afforestation location is mainly decided by administrative convenience. Also, there is limited literature on location suitability about the marine afforestation. This study aims to assess location suitability of marine afforestation considering 3 significant criteria: ecological, submarine topographical, and human-social environment. Jeju, the study area of this study, first observed chlorosis in Korean coast at the small fishery town in Seogwipo. Jeju is currently suffering from chlorosis all around the island. Habitat Evaluation Procedure (HEP), 3D kriging, Analytic Hierarchy Process (AHP) is applied as analysis methods. Especially, 3D kriging is utilized for modeling 3D ocean space reflecting ocean environment appropriately. The result shows that Jocheon coast has better location suitability than Seogwipo Pyoseon coast. Jocheon coast has the maximum 61% suitability as the habitat of Ecklonia cava Kjellman, and is highly evaluated in other criteria. The results of this study are expected to find optimal marine afforestation location, and to contribute to the restoration of the Jeju coastal ecosystem and the revitalization of Jeju fishing village societies.

  • PDF

Effects of Nitrogen Fertilization on Physiological Characteristics and Growth of Populus sibirica Seedlings in a Semi-arid Area, Mongolia (몽골 반건조지에서의 질소 시비가 Populus sibirica 묘목의 생리 및 생장 특성에 미치는 영향)

  • Chang, Hanna;Han, Seung Hyun;Kang, Hoduck;Akhmadi, Khaulenbek;Son, Yowhan
    • Journal of Korean Society of Forest Science
    • /
    • v.106 no.1
    • /
    • pp.19-25
    • /
    • 2017
  • This study was conducted to investigate the effects of nitrogen fertilization on physiological characteristics and growth of Populus sibirica seedlings in a semi-arid area, Mongolia. 2-year-old P. sibirica seedlings were planted in May, 2015 with applications of urea 5 g (N1), 15 g (N2), 30 g (N3) and ammonium sulfate 33 g (NS; same nitrogen amount with N2) to each seedling. Chlorophyll contents were significantly different among treatments in August, but not in June and July. The lower chlorophyll contents in August than those in June and July might be related to leaf senescence. In June and July, net photosynthetic rate was higher in NS and N2 than in the control. Unlike the tendency of photosynthesis, transpiration rate was highest in N2, but lower in NS than in any other nitrogen treatments. Relative growth rate of root collar diameter was significantly higher only in NS than in the control and it of height did not differ among treatments. Leaf area in nitrogen treatments was not significantly different from that in the control. Ammonium sulfate seemed to be more suitable fertilizer than urea for the early growth of P. sibirica seedlings in the study site. However, as the effects of urea and ammonium sulfate on soils and seedlings were different, further studies would be necessary to determine the optimal amount of ammonium sulfate.

Ziziphus spina christifor Sustainable Agroforestry Farming in Arid Land of Khartoum State of Sudan

  • Mustafa Abdalla Nasre Aldin;Hussein Alawad Seid Ahmed;Mohamed El Mukhtar Ballal;Adil Mahgoub Farah
    • Journal of Forest and Environmental Science
    • /
    • v.39 no.1
    • /
    • pp.20-26
    • /
    • 2023
  • Cow pea (Vigna unguiculata) was intercropped with Ziziphus spina-christi as summer forage in two consecutive seasons of 2017 and 2018. The aims to find out suitable agroforestry practice for saline soils of Khartoum State. And to investigate effect of tree spacing on forage biomass yield under semi -irrigated systems. Completely randomized block design with 3 replicates was conducted for this trial. Thus Z.spina-christi that fixed at 4×4 m was intercropped with cowpea at 1 m and 1.5 m spacing from trees trunk. Tree growth parameters were measured in terms of tree height, tree collar diameter, tree crown diameter and fruit yield per tree. While crop were parameters were determined in terms of plant height, number of plant, forage biomass yield per ha and land equivalent ratio. Soil profile of 1×1 m and 1.5 m depth was excavated and its features were described beside its chemical and physical properties were analyzed for 0-10 cm, 0-30 cm, and 30-60 cm and 60-100 cm layers. The results revealed that soil pH, CaCO3, SAR, ESP, and EC ds/m were increased by increasing soil depths. Meanwhile tree growth in terms of tree height was significant in the first season 2017 when compared with tree collar diameter and tree crown diameter. Also significant differences were recorded for tree growth when compared with sole trees in the second season in 2018. Tree fruit showed marked variations between the two seasons, but it was higher under intercropping particularly at ZS2. Crop plant height was highly significant under sole cropping than intercropping in first season in 2017. In contrast forage biomass yield was significant under intercropping in ZS1 and ZS2 treatments. Land equivalent ratio was advantageous under this agroforestry system particularly under ZS2. Thus it recorded 5 and 9 for ZS2 in the two consecutive seasons respectively. Therefore, it is feasible to introduce this agroforestry system under such arid lands to provide summer forage yield of highly nutritive value and low cost for animals feed as well as to increase farmers' income and to halt desertification and to sequester carbon.

Effects of Hydrogen Peroxide on Germination and Early Growth of Sorghum (Sorghum bicolor) (과산화수소 처리가 수수의 발아 및 초기 생장에 미치는 효과)

  • Shim, Doobo;Song, Ki Eun;Park, Chan Young;Jeon, Seung Ho;Hwang, Jung Gyu;Kang, Eun-ju;Kim, Jong Cheol;Shim, Sangin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.63 no.2
    • /
    • pp.140-148
    • /
    • 2018
  • As the global warming causing desertification increase, there is growing concern about damage of crops. It was to investigate how the treatment with hydrogen peroxide before leaf development affects the growth and yield of sorghum for minimizing a damage of crops to drought. The germination experiment was conducted at alternating temperature of $25^{\circ}C/20^{\circ}C$(12 hr/12 hr) under water stress condition of 0 ~ -0.20 MPa adjusted with PEG solution containing 0 and 10 mM $H_2O_2$. In order to know the effect of foliar application of hydrogen peroxide on the growth of sorghum, 10 mM hydrogen peroxide was treated to leaves at 3-leaf stage of sorghum growing in greenhouse conditions. Seed germination rate was increased by 20% in hydrogen peroxide treatment as compared to the Control. under water stress conditions (-0.15 ~ -0.20 MPa). The length of seedlings was also on the rise by the hydrogen peroxide treatment. In the greenhouse pot experiment, the morphological characteristics (plant height, stem diameter, leaf length, and leaf number) and physiological characteristics (chlorophyll content, chlorophyll fluorescence (Fv/Fm), stomatal conductance) were higher in the plants treated with hydrogen peroxide under the drought stress condition than those of plants of $H_2O$ treatment. Experiment conducted with the soil moisture gradient system showed that the foliar application of hydrogen peroxide increased photosynthetic ability of sorghum plant with respect to SPAD value and stomatal conductance and rooting capacity (root weight and root length) under drought condition. Generally, hydrogen peroxide treatment in sorghum increased the tolerance to drought stress and maintained better growth due to ameliorating oxidative stress.

A Long-term Variability of the Extent of East Asian Desert (동아시아 사막 면적의 경년변화분석)

  • Han, Hyeon-Gyeong;Lee, Eunkyung;Son, Sanghun;Choi, Sungwon;Lee, Kyeong-Sang;Seo, Minji;Jin, Donghyun;Kim, Honghee;Kwon, Chaeyoung;Lee, Darae;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.869-877
    • /
    • 2018
  • The area of desert in East Asia is increasing every year, and it cause a great cost of social damage. Because desert is widely distributed and it is difficult to approach people, remote sensing using satellites is commonly used. But the study of desert area comparison is insufficient which is calculated by satellite sensor. It is important to recognize the characteristics of the desert area data that are calculated for each sensor because the desert area calculated according to the selection of the sensor may be different and may affect the climate prediction and desertification prevention measures. In this study, the desert area of Northeast Asia in 2001-2013 was calculated and compared using Moderate Resolution Imaging Spectroradiometer (MODIS) and Vegetation. As a result of the comparison, the desert area of Vegetation increased by $3,020km^2/year$, while in the case of MODIS, it decreased by $20,911km^2/year$. We performed indirect validation because It is difficult to obtain actual data. We analyzed the correlation with the occurrence frequency of Asian dust affected by desert area change. As a result, MODIS showed a relatively low correlation with R = 0.2071 and Vegetation had a relatively high correlation with R = 0.4837. It is considered that Vegetation performed more accurate desert area calculation in Northeast Asian desert area.